Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group

Constraint on the optical constants of a film–substrate system for operation as an external-reflection retarder at a given angle of incidence

Not Accessible

Your library or personal account may give you access

Abstract

Given a transparent film of refractive index n1 on an absorbing substrate of complex refractive index n2-jk2, we examine the constraint on n1, n2, and k2 such that the film–substrate system acts as an external-reflection retarder of specified retardance Δ at a specified angle of incidence ϕ. The constraint, which takes the form f(n1,n2,k2;ϕ,Δ) = 0, is portrayed graphically by equi-n1 contours in the n2,k2 plane at ϕ = 45, 70° and for Δ = ±90 and ±180°, corresponding to quarterwave and halfwave retarders (QWR and HWR), respectively. The required film thickness as a fraction of the film thickness period and the polarization-independent device reflectance ℛ are also studied graphically as functions of the optical constants. It is found that as n2 → 0, ℛ → 1, so that a metal substrate such as Ag is best suited for high-reflectance QWR (ϕ > 45°) and HWR (ϕ ≤ 45°). However, films that achieve QWR at ϕ ≤ 45° are excellent antireflection coatings of the underlying dielectric, semiconductor, or metallic substrate.

© 1985 Optical Society of America

Full Article  |  PDF Article
More Like This
Three-reflection halfwave and quarterwave retarders using dielectric-coated metallic mirrors

T. F. Thonn and R. M. A. Azzam
Appl. Opt. 23(16) 2752-2759 (1984)

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Figures (18)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Tables (4)

You do not have subscription access to this journal. Article tables are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Equations (15)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All Rights Reserved