OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Vol. 24, Iss. 9 — May. 1, 1985
  • pp: 1270–1282

Control and measurement of ultrashort pulse shapes (in amplitude and phase) with femtosecond accuracy

Jean-Claude M. Diels, Joel J. Fontaine, Ian C. McMichael, and Francesco Simoni  »View Author Affiliations


Applied Optics, Vol. 24, Issue 9, pp. 1270-1282 (1985)
http://dx.doi.org/10.1364/AO.24.001270


View Full Text Article

Enhanced HTML    Acrobat PDF (1634 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

The performances of a tunable femtosecond dye laser are analyzed using accurate correlation techniques. The source is a passively mode-locked dye laser, of which both the frequency and frequency modulation are controlled by one or two intracavity prisms. Interferometric second-order autocorrelations, with a peak-to-background ratio of 8 to 1, are used simultaneously with the conventional intensity autocorrelation and the pulse spectrum to determine the pulse shape. The main advantages of the interferometric autocorrelations are that they provide phase information otherwise not available, and they are more sensitive to the pulse shape than the intensity autocorrelation. The phase sensitivity is demonstrated in an analysis of the Gaussian pulses with a linear frequency modulation. Analytical expressions for the envelopes of the interferometric autocorrelations of typical pulse shapes are provided for quick pulse shape identification. A numerical method is used to analyze the more complex pulse shapes and chirps that can be produced by the laser. A series of examples demonstrates the control of this laser over various pulse shapes and frequency modulations. Pulse broadening or compression by propagation through glass is calculated for the pulse shapes determined from the fittings. Comparisons of autocorrelations and cross correlations calculated for the dispersed pulses, with the actual measurements, demonstrate the accuracy of the fitting procedure. The method of pulse shape determination demonstrated here requires a train of identical pulses. Indeed, it is shown that, for example, a train of unchirped pulses randomly distributed in frequency can have the same interferometric autocorrelation than a single chirped pulse. In the case of the present source, a comparison of the pulse spectrum, with that of the second harmonic, gives an additional proof that pulse-to-pulse fluctuations are negligible.

© 1985 Optical Society of America

History
Original Manuscript: December 17, 1984
Published: May 1, 1985

Citation
Jean-Claude M. Diels, Joel J. Fontaine, Ian C. McMichael, and Francesco Simoni, "Control and measurement of ultrashort pulse shapes (in amplitude and phase) with femtosecond accuracy," Appl. Opt. 24, 1270-1282 (1985)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-24-9-1270

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

If you are accessing the full text through a member bundle, please use the Enhanced HTML link to gain access to the citation lists and other restricted features. Note that accessing both the PDF and HTML versions of an article will count as only one download against your account.

Contact your librarian or system administrator
or
Log in to access OSA Member Subscription

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

If you are accessing the full text through a member bundle, please use the Enhanced HTML link to gain access to the citation lists and other restricted features. Note that accessing both the PDF and HTML versions of an article will count as only one download against your account.

Contact your librarian or system administrator
or
Log in to access OSA Member Subscription

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

If you wish to use one of your free member downloads to view the figures, click "Enhanced HTML" above and access the figures from the article itself or from the navigation tab.

Contact your librarian or system administrator
or
Log in to access OSA Member Subscription

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

If you are accessing the full text through a member bundle, please use the Enhanced HTML link to gain access to the citation lists and other restricted features. Note that accessing both the PDF and HTML versions of an article will count as only one download against your account.

Contact your librarian or system administrator
or
Log in to access OSA Member Subscription

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited