OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Vol. 25, Iss. 11 — Jun. 1, 1986
  • pp: 1770–1774

Fiber-optic heterodyne phase-shift measurement of plasma current

George I. Chandler, P. R. Forman, F. C. Jahoda, and K. A. Klare  »View Author Affiliations


Applied Optics, Vol. 25, Issue 11, pp. 1770-1774 (1986)
http://dx.doi.org/10.1364/AO.25.001770


View Full Text Article

Enhanced HTML    Acrobat PDF (741 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

By combining twisted optical sensing fiber and heterodyne phase detection of circular birefringence we have (a) overcome the distortion problem caused by residual linear birefringence in the Faraday rotation method of measuring enclosed current and (b) used only a single output detector without requiring intensity normalization. Resolution of 400 ampere-turns has been obtained in the hostile electromagnetic environment of a working thermonuclear fusion research device. The fiber was simply wound around the existing machine. The measured values are in excellent agreement with those of the electrical Rogowski coil installed when the machine was built.

© 1986 Optical Society of America

History
Original Manuscript: January 21, 1986
Published: June 1, 1986

Citation
George I. Chandler, P. R. Forman, F. C. Jahoda, and K. A. Klare, "Fiber-optic heterodyne phase-shift measurement of plasma current," Appl. Opt. 25, 1770-1774 (1986)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-25-11-1770


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. A. M. Smith, “Polarization and Magnetooptic Properties of Single-Mode Optical Fiber,” Appl. Opt. 17, 52 (1978). [CrossRef] [PubMed]
  2. A. Papp, H. Harms, “Magnetooptical Current Transformer. 1: Principles,” Appl. Opt. 19, 3729 (1980). [CrossRef] [PubMed]
  3. G. I. Chandler, F. C. Jahoda, “Current Measurements by Faraday Rotation in Single-Mode Optical Fibers,” Rev. Sci. Instrum. 56, 852 (1985). [CrossRef]
  4. R. C. Jones, “A New Calculus for the Treatment of Optical Systems. I,” J. Opt. Soc. Am. 31, 488 (1941). [CrossRef]
  5. W. J. Tabor, F. S. Chen, “Electronmagnetic Propagation Through Materials Possessing Both Faraday Rotation and Birefringence: Experiments with Ytterbium Orthoferrite,” J. Appl. Phys. 40, 2760 (1969). [CrossRef]
  6. R. C. Jones, “A New Calculus for the Treatment of Optical Systems. VII: Properties of the N-Matrices,” J. Opt. Soc. Am. 38, 671 (1948). [CrossRef]
  7. The equivalence of the derivations of Refs. 5 and 6 follows from (a) the matrix given as Eq. (4.17) in Ref. 6 with the definitions of Table I in the same reference that equate g0 and ω with the per unit length values of δ/2 and F in the Smith notation, respectively; (b) the substitution of g45 = 0 for this particular example; and (c) Jones's definitions of g and Γ in his Eqs. (4.11) and (4.17).
  8. S. C. Rashleigh, R. Ulrich, “Magneto-Optic Current Sensing with Birefringence Fibers,” Appl. Phys. Lett. 34, 768 (1979). [CrossRef]
  9. R. Ulrich, A. Simon, “Polarization Optics of Twisted Single-Moded Fibers,” Appl. Opt. 18, 2241 (1979). [CrossRef] [PubMed]
  10. EOTec,Inc., 420 Frontage Road, West Haven, CT 06516.
  11. R. Ulrich, S. C. Rashleigh, W. Eickhoff, “Bending-Induced Birefringence in Single-Mode Fibers,” Opt. Lett. 5, 273 (1980). [CrossRef] [PubMed]
  12. S. C. Rashleigh, “Origins and Control of Polarization Effects in Single-Mode Fibers,” IEEE/OSA J. Lightwave Technol. LT-1, 312 (1983). [CrossRef]
  13. G. I. Chandler, P. R. Forman, F. C. Jahoda, “Measurement of Faraday Rotation in Twisted Optical Fiber Using Rotating Polarization and Analog Phase Detection,” Proc. Soc. Photo-Opt. Instrum. Eng. 566, 206 (1985).
  14. D. A. Baker et al., “Plasma Physics and Controlled Nuclear Fusion Research 1982” (IAEA, Vienna, 1983), Vol. 1, p. 587.
  15. C. F. Buhrer, L. R. Bloom, D. H. Baird, “Electrooptic Light Modulation with Cubic Crystals,” Appl. Opt. 2, 839 (1963). [CrossRef]
  16. J. P. Campbell, W. H. Steier, “Rotating-Waveplate Optical-Frequency Shifting in Lithium Niobate,” IEEE J. Quantum Electron. QE-7, 450 (1971). [CrossRef]
  17. T. Okoshi, N. Fukaya, K. Kikuchi, “New Polarization-State Control Device: Rotatable Fibre Cranks,” Electron. Lett. 21, 895 (1985). [CrossRef]
  18. M. M. Fejer, J. L. Nightingale, G. A. Magel, R. L. Byer, “Laser-Heated Miniature Pedestal Growth Apparatus for Single-Crystal Optical Fibers,” Rev. Sci. Instrum. 55, 1791 (1984). [CrossRef]
  19. See for example, P. Horowitz, W. Hill, The Art of Electronics (Cambridge U.P., London, 1980), p. 429.

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited