OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Vol. 25, Iss. 15 — Aug. 1, 1986
  • pp: 2506–2513

Carbon dioxide laser backscatter signatures from laboratory-generated dust

Diane Powell Walter, David E. Cooper, Jan E. van der Laan, and Edward R. Murray  »View Author Affiliations


Applied Optics, Vol. 25, Issue 15, pp. 2506-2513 (1986)
http://dx.doi.org/10.1364/AO.25.002506


View Full Text Article

Enhanced HTML    Acrobat PDF (896 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

A dual CO2 laser system was used to measure aerosol backscatter spectral signatures from dust minerals (kaolin, illite, montmorillonite, colemanite, and limestone) as well as from a soil sample from Dugway Proving Ground, UT. Complex refractive indices measured from bulk samples of the materials and particle size distributions measured with a cascade impactor were used to compute theoretical backscatter spectra using Mie theory. The measured signatures agreed well with calculated signatures for most minerals and the soil sample. The experiment demonstrated the feasibility of detecting the compositional elements of dust using a CO2 laser-based system.

© 1986 Optical Society of America

History
Original Manuscript: March 4, 1986
Published: August 1, 1986

Citation
Diane Powell Walter, David E. Cooper, Jan E. van der Laan, and Edward R. Murray, "Carbon dioxide laser backscatter signatures from laboratory-generated dust," Appl. Opt. 25, 2506-2513 (1986)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-25-15-2506


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. R. L. Byer, E. R. Murray, “Remote Monitoring with Laser Sources,” in Air Pollution Analysis, R. Perry, Ed. (Chapman and Hall, London, 1977).
  2. W. B. Grant, “An Intermediate-Distance Dual cw CO2 Laser Remote Sensor for Atmospheric Trace Gases,” in Technical Digest, Topical Meeting on Optical Remote Sensing of the Atmosphere (Optical Society of America, Washington, DC, 1985), paper TuC30.
  3. J. Rothermel, “Coherent Lidar Measurements of Backscatter and Transmission Loss of Profiles,” in Technical Digest, Topical Meeting on Optical Remote Sensing of the Atmosphere (Optical Society of America, Washington, DC, 1985), paper WC13.
  4. E. R. Murray, J. E. van der Laan, “Remote Measurement of Ethylene Using a CO2 Differential-Absorption Lidar,” Appl. Opt. 17, 814 (1978). [CrossRef] [PubMed]
  5. J. L. Bufton et al., “Frequency-Doubled CO2 Lidar Measurement and Diode Laser Spectroscopy of Atmospheric CO2,” Appl. Opt. 22, 2592 (1983). [CrossRef] [PubMed]
  6. D. F. Flanigan, H. P. DeLong, “Spectral Absorption Characteristics of the Major Components of Dust Clouds,” Appl. Opt. 10, 51 (1971). [CrossRef] [PubMed]
  7. J. F. Ebersol et al., “Measurement of the Infrared Optical Properties of Aerosols,” in Technical Digest, Topical Meeting on Atmospheric Aerosols, Their Optical Properties and Effects (Optical Society of America, Washington, DC, 1976), paper TUB9.
  8. H. T. Mudd, C. H. Kruger, E. R. Murray, “Measurement of IR Laser Backscatter from Sulfuric Acid and Ammonium Sulfate Aerosols,” Appl. Opt. 21, 1146 (1982). [CrossRef] [PubMed]
  9. M. L. Wright, “Lidar Determination of the Composition of Atmospheric Aerosols,” Final Report, contract NAS2-8914, SRI Project 4358, SRI International, Menlo Park, CA (Jan.1979).
  10. H. C. van de Hulst, Light Scattering by Small Particles (Wiley, New York, 1957).
  11. M. Kerker, Ed., Electromagnetic Scattering (MacMillan, New York, 1963).
  12. D. Deirmendjian, Electromagnetic Scattering on Spherical Polydispersions (American Elsevier, New York, 1969).
  13. E. J. McCartney, Optics of the Atmosphere (WileyNew York, 1976).
  14. M. L. Wright, G. Gioumousis, “Studies of DIAL/DISC Remote Sensing Techniques for Chemical Agent Detection,” Phase I Theoretical Report for Chemical Systems Laboratory, Report ARCSL-CR-80042, contract DAAK11-78-C-0074, SRI Project 764# #w, Semiempirical Theory and Its Application to Tropospheric Aerosols,” J. Atmos. Sci. 37, (1979).
  15. W. M. Irvien, J. B. Pollack, “Title,” Icarus 8, 324 (1968).
  16. J. B. Pollack, J. N. Cuzzi, “Scattering by Nonspherical Particles of Size Comparable to a Wavelength: A New Semiempirical Theory and Its Application to Tropospheric Aerosols,” J. Atmos. Sci. 37, 868 (1979). [CrossRef]
  17. R. M. Welch, S. K. Cox, “Nonspherical Extinction and Absorption Efficiencies,” Appl. Opt. 17, 3159 (1978). [CrossRef] [PubMed]
  18. M. R. Querry, “Molecular and Crystalline Electromagnetic Properties of Selected Condensed Materials in the Infrared,” Final Report, U.S. Army Research Office, grant DAAG29-76-G-0185 (30Aug.1979).
  19. A. B. Garrett, W. T. Lippincott, F. H. Verhoek, Chemistry—A Study of Matter, (Blaisdell, MA., 1968).
  20. M. R. Querry, Science Metrics, Inc.; private communication (1984).
  21. Georgia Kaolin Co., Union, NJ, descriptive literature (1984).
  22. C. E. Lapple, “Particle-Size Analysis: Analyzers,” Chem. Eng. 75, 149 (20May1968).
  23. C. Witham, “Title,” in Dry Dispersion with Sonic Velocity Nozzles, A. Deepak, Ed. (Deepak, Hampton, VA, Location, 1983).
  24. M. R. Querry, Science Metrics, Inc., private communication (1985).
  25. S. Herring, U. California, Chemical Engineering Department; private communication (1985).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited