OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Vol. 25, Iss. 15 — Aug. 1, 1986
  • pp: 2546–2553

Doppler lidar atmospheric wind sensors: a comparative performance evaluation for global measurement applications from earth orbit

Robert T. Menzies  »View Author Affiliations


Applied Optics, Vol. 25, Issue 15, pp. 2546-2553 (1986)
http://dx.doi.org/10.1364/AO.25.002546


View Full Text Article

Enhanced HTML    Acrobat PDF (1205 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

A comparison is made of four prominent Doppler lidar systems, ranging in wavelength from the near UV to the middle IR, which are presently being studied for their potential in an earth-orbiting global tropospheric wind field measurement application. The comparison is restricted to relative photon efficiencies, i.e., the required number of transmitted photons per pulse is calculated for each system, for mid-tropospheric velocity estimate uncertainties ranging from :±1 to ±4 m/s. The results are converted to laser transmitter pulse energy and power requirements. The analysis indicates that a coherent CO2 Doppler lidar operating at 9.11-μm wavelength is the most efficient.

© 1986 Optical Society of America

History
Original Manuscript: February 1, 1986
Published: August 1, 1986

Citation
Robert T. Menzies, "Doppler lidar atmospheric wind sensors: a comparative performance evaluation for global measurement applications from earth orbit," Appl. Opt. 25, 2546-2553 (1986)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-25-15-2546


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. R. M. Huffaker, Ed., Feasibility Study of Satellite-Borne Lidar Global Wind Monitoring System, NOAA TM ERL WPL-37 (1978).
  2. Global Wind Measuring Satellite System—WINDSAT, Final Report, NOAA contract NA79RA C00127, Lockheed Missiles & Space Co., with Perkin-Elmer Corp. and GTE Sylvania (Apr.1981).
  3. Feasibility Study of a Windsat Free Flyer, Final Report, contract NA82RAC00141, RCA Government Systems Division, Astro-Electronics, Princeton, NJ, with Perkin-Elmer Corp. and Math. Science Northwest, Inc. (July1983).
  4. R. T. Menzies, “A Comparison of Doppler Lidar Wind Sensors for Earth-Orbit Global Measurement Applications,” in Global Wind Measurements, W. E. Baker, R. J. Curran, Eds. (A. Deepak, Hampton, VA, 1985).
  5. M. J. Kavaya, R. T. Menzies, “Lidar Aerosol Backscatter Measurements: Systematic, Modeling, and Calibration Error Considerations,” Appl. Opt. 24, 3444 (1985). [CrossRef] [PubMed]
  6. V. J. Abreu, “Wind Measurements from an Orbiting Platform Using a Lidar System with Incoherent Detection: An Analysis,” Appl. Opt. 18, 2992 (1979). [CrossRef] [PubMed]
  7. P. B. Hays, V. J. Abreu, J. Sroga, A. Rosenberg, “Analysis of a 0.5 Micron Spaceborne Wind Sensor,” presented at the AMS Conference on Satellite Remote Sensing, Clearwater, FL (June 1984).
  8. G. S. Kent, G. K. Yue, U. O. Farrukh, A. Deepak, “Modeling Atmospheric Aerosol Backscatter at CO2 Laser Wavelengths. 1: Aerosol Properties, Modeling Techniques, and Associated Problems,” Appl. Opt. 22, 1655 (1983); also G. S. Kent, personal communication (1985). [CrossRef] [PubMed]
  9. T. S. Cress, “Airborne Measurement of Aerosol Size Distributions Over Northern Europe,” Vol. 1, Spring and Fall, 1976; Summer, 1977, AFGL, Hanscom Field, MA, Environmental Research Paper 702 (May1980).
  10. E. M. Patterson, C. S. Kiang, A. C. Delany, A. F. Wartburg, A. C. D. Leslie, B. J. Heubert, “Global Measurements of Aerosols in Remote Continental and Marine Regions: Concentrations, Size Distributions, and Optical Properties,” J. Geophys. Res. 85, 7361 (1980). [CrossRef]
  11. M. J. Post, “Aerosol Backscattering Profiles at CO2 Wavelengths: the NOAA Data Base,” Appl. Opt. 23, 2507 (1984). [CrossRef] [PubMed]
  12. R. M. Huffaker, T. R. Lawrence, R. J. Keeler, M. J. Post, J. T. Priestly, J. A. Korrell, Feasibility Study of Satellite-Borne Lidar Global Wind Monitoring System, Part II, NOAA TM ERL WPL-63 (1980).
  13. D. Sliney, M. Wolbarsht, Safety with Lasers and Other Optical Sources (Plenum, New York, 1982).
  14. Shuttle Atmospheric Lidar Research Program: Final Report of Atmospheric Lidar Working Group, NASA Spec. Publ. 433 (NTIS, Springfield, VA, 1979).
  15. P. B. Hays, T. L. Killeen, B. C. Kennedy, “The Fabry-Perot Interferometer on Dynamics Explorer,” Space Sci. Instrum. 5, 395 (1981).
  16. D. Rees, P. A. Rounce, I. McWhirter, A. F. D. Scott, A. H. Greenaway, W. Towlson, “Observations of Atmospheric Absorption Lines from a Stabilized Balloon Platform and Measurements of Stratospheric Winds,” J. Phys. E 15, 191 (1982). [CrossRef]
  17. I. S. McDermid, J. B. Laudenslager, D. Rees, “UV-Excimer Laser Based Incoherent Doppler Lidar System,” in Global Wind Measurements, W. E. Baker, R. J. Curran, Eds. (A. Deepak, Hampton, VA, 1985).
  18. D. S. Zrnik, “Estimation of Spectral Moments for Weather Echoes,” IEEE Trans. Geosci. Electron. GE-17, 113 (1979). [CrossRef]
  19. T. J. Kane, B. Zhou, R. L. Byer, “Potential for Coherent Doppler Wind Velocity Lidar Using Neodymium Lasers,” Appl. Opt. 23, 2477 (1984). [CrossRef] [PubMed]
  20. G. J. Hernandez, “Analytical Description of a Fabry-Perot Photoelectric Spectrometer,” Appl. Opt. 5, 1745 (1966); “Analytical Description of a Fabry-Perot Photoelectric Spectrometer: 2. Numerical Results,” Appl. Opt. 9, 1591 (1970). [CrossRef] [PubMed]
  21. G. Megie, R. T. Menzies, “Complementarity of UV and IR Differential Absorption Lidar for Global Measurements of Atmospheric Species,” Appl. Opt. 19, 1173 (1980). [CrossRef] [PubMed]
  22. W. E. Baker, “Objective Analysis and Assimilation of Observational Data from FGGE,” Mon. Weather Rev. 111, 328 (1983). [CrossRef]
  23. R. Atlas, E. Kalnay, M. Halem, “Impact on Satellite Temperature Sounding and Wind Data on Numerical Weather Prediction,” Opt. Eng. 24, 341 (1985). [CrossRef]
  24. R. M. Atlas, “Observing System Simulation Experiments at GSFC,” in Global Wind Measurements, W. E. Baker, R. J. Curran, Eds. (A. Deepak, Hampton, VA, 1985).
  25. G. D. Emmitt, “Doppler Lidar Sampling Strategies and Accuracies—Regional Scale,” in Global Wind Measurements, W. E. Baker, R. J. Curran, Eds. (A. Deepak, Hampton, VA, 1985).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited