OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Vol. 25, Iss. 15 — Aug. 1, 1986
  • pp: 2571–2583

Active–passive correlation spectroscopy: a new technique for identifying ocean color algorithm spectral regions

Frank E. Hoge and Robert N. Swift  »View Author Affiliations


Applied Optics, Vol. 25, Issue 15, pp. 2571-2583 (1986)
http://dx.doi.org/10.1364/AO.25.002571


View Full Text Article

Enhanced HTML    Acrobat PDF (2084 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

A new active–passive airborne data correlation technique has been developed which allows the validation of existing in-water ocean color algorithms and the rapid search, identification, and evaluation of new sensor band locations and algorithm wavelength intervals. Thus far, applied only in conjunction with the spectral curvature algorithm (SCA), the active–passive correlation spectroscopy (APCS) technique shows that (a) the usual 490-nm (center-band) chlorophyll SCA could satisfactorily be placed anywhere within the nominal 460–510-nm interval, and (b) two other spectral regions, 645–660 and 680–695 nm, show considerable promise for chlorophyll pigment measurement. Additionally, the APCS method reveals potentially useful wavelength regions (at 600 and ~670 nm) of very low chlorophyll-in-water spectral curvature into which accessory pigment algorithms for phycoerythrin might be carefully positioned. In combination, the APCS and SCA methods strongly suggest that significant information content resides within the seemingly featureless ocean color spectrum.

© 1986 Optical Society of America

History
Original Manuscript: January 28, 1986
Published: August 1, 1986

Citation
Frank E. Hoge and Robert N. Swift, "Active–passive correlation spectroscopy: a new technique for identifying ocean color algorithm spectral regions," Appl. Opt. 25, 2571-2583 (1986)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-25-15-2571


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. W. Strumm, J. Morgan, Aquatic Chemistry (Wiley, New York, 1981).
  2. H. R. Gordon, A. Y. Morel, “Remote Assessment of Ocean Color for Interpretation of Satellite Visible Imagery, A Review,” in Lecture Notes on Coastal and Estuarine Studies (Springer-Verlag, New York, 1983).
  3. F. E. Hoge, R. N. Swift, “Application of the NASA Airborne Oceanographic Lidar to the Mapping of Chlorophyll and Other Organic Pigments,” in Chesapeake Bay Plume Study Superflux 1980, NASA Conf. Publ. 2188, 349 (1981).
  4. F. E. Hoge, R. N. Swift, “Airborne Simultaneous Spectroscopic Detection of Laser-Induced Water Raman Backscatter and Fluorescence from Chlorophyll a and Other Naturally Occurring Pigments,” Appl. Opt. 20, 3197 (1981). [CrossRef] [PubMed]
  5. F. E. Hoge, R. N. Swift, “Airborne Dual Laser Excitation and Mapping of Phytoplankton Photopigments in a Gulf Stream Warm Core Ring,” Appl. Opt. 22, 2272 (1983). [CrossRef] [PubMed]
  6. F. E. Hoge, R. N. Swift, “Airborne Mapping of Laser-Induced Fluorescence of Chlorophyll a and Phycoerythrin in a Gulf Stream Warm Core Ring,” paper 18, in Mapping Strategies in Chemical Oceanography, A. Zirino, Ed. (American Chemical Society, Washington, DC, 1985), pp. 353–372. [CrossRef]
  7. F. E. Hoge, R. E. Berry, R. N. Swift, “Active–Passive Airborne Ocean Color Measurement. 1: Instrumentation,” Appl. Opt. 25, 39 (1986). [CrossRef] [PubMed]
  8. F. E. Hoge, R. N. Swift, J. K. Yungel, “Active–Passive Airborne Ocean Color Measurements. 2: Applications,” Appl. Opt. 25, 48 (1986). [CrossRef] [PubMed]
  9. M. Bristow, D. Nielsen, D. Bundy, F. Furtek, “Use of Water Raman Emission to Correct Airborne Laser Fluorosensor Data for Effects of Water Optical Attenuation,” Appl. Opt. 20, 2889 (1981). [CrossRef] [PubMed]
  10. R. C. Smith, U. California, Santa Barbara; personal communication.
  11. D. A. Kiefer, “Chlorophyll a Fluorescence in Marine Centric Diatoms: Responses of Chloroplasts to Light and Nutrient Stress,” Mar. Biol. 23, 39 (1973). [CrossRef]
  12. R. H. Wiens, H. H. Zwick, “Trace Gas Detection by Correlation Spectroscopy,” in Infrared, Correlation and Fourier Transform Spectroscopy, J. S. Mattson, H. B. Mark, H. C. MacDonald, Eds. (Marcel Dekker, New York, 1977), Chap. 3, pp. 119–190.
  13. R. A. O’Neil, L. Buja-Bijunas, D. M. Rayner, “Field Performance of a Laser Fluorosensor for the Detection of Oil Spills,” Appl. Opt. 19, 863 (1980). [CrossRef]
  14. P. G. Hasell, L. M. Peterson, F. J. Thomson, E. A. Work, F. J. Kriegler, “Active and Passive Multispectral Scanner for Earth Resources Applications,” Final Report under NASA Control NAS9-14594 to Environmental Research Institute of Michigan, ERIM Report 115800-49-F (June1977).
  15. D. R. Lyzenga, “Remote Bathymetry Using Active–Passive Techniques,” in IEEE Digest of the International Geoscience and Remote Sensing Symposium, Vol. 2 (June1981), pp. 779–786.
  16. G. W. Grew, L. S. Mayo, “Ocean Color Algorithm for Remote Sensing of Chlorophyll,” NASA Tech. Paper 2164 (Langley Research Center, Hampton, VA, 1983).
  17. G. W. Grew, “Real-Time Test of MOCS Algorithm During Superflux 1980,” in Chesapeake Bay Plume Study Superflux 1980, NASA Conf. Publ. 2188 (1981).
  18. J. W. Campbell, W. E. Esaias, “Basis for Spectral Curvature Algorithms in Remote Sensing of Chlorophyll,” Appl. Opt. 22, 1084 (1983). [CrossRef] [PubMed]
  19. S. Lin, G. A. Borstad, J. F. R. Gower, “Remote Sensing of Chlorophyll in the Red Spectral Region,” in Remote Sensing of Shelf Sea Hydrodynamics, J. C. J. Nihoul, Ed. (Elsevier, Amsterdam, 1984), pp. 317–336. [CrossRef]
  20. R. A. Neville, J. F. R. Gower, “Passive Remote Sensing of Phytoplankton via Chlorophyll a Fluorescence,” J. Geophys. Res. 82, 3487 (1977). [CrossRef]
  21. J. F. R. Gower, “Observations of in situ Fluorescence of Chlorophyll in Saanich Inlet,” Boundary Layer Meteorol. 18, 235 (1980). [CrossRef]
  22. H. R. Gordon, D. K. Clark, J. W. Brown, O. B. Brown, R. H. Evans, W. W. Broenkow, “Phytoplankton Pigment Concentration in the Middle Atlantic Bight: Comparison of Ship Determinations and CZCS Estimates,” Appl. Opt. 22, 20 (1983). [CrossRef] [PubMed]
  23. L. R. Poole, W. E. Esaias, “Water Raman Normalization of Airborne Laser Fluorosensor Measurements: A Computer Study,” Appl. Opt. 21, 3756 (1982). [CrossRef] [PubMed]
  24. A. F. Bunkin, D. V. Vlaso, D. M. Mirkamilov, V. P. Slobodyanin, “Aerial Laser Sounding of the Turbidity Profile and Mapping of the Distribution of Phytoplankton,” Dokl. Akad. Nauk SSSR 279, 335 (1984). [NASA Tech. Memo. 77851 (1985)].
  25. R. C. Smith, K. S. Baker, “Optical Classification of Natural Waters,” Limnol. Oceanogr. 23, 260 (1978). [CrossRef]
  26. J. J. Walsh, U. South Florida; private communication (manuscript in preparation).
  27. C. M. Moreth, C. S. Yentsch, “A Sensitive Method for the Determination of Open Ocean Phytoplankton Phycoerythrin Pigments by Fluorescence,” Limnol. Oceanogr. 15, 313 (1970). [CrossRef]
  28. D. E. Stewart, “A Method for the Extraction and Quantitation of Phycoerythrin from Algae,” NASA Contractor Report 165996 by Bionetics Corp. under contract NAS1-16978, Hampton, VA.
  29. M. P. F. Bristow, D. H. Bundy, C. M. Edmonds, P. E. Ponto, B. E. Frey, L. F. Small, “Airborne Laser Fluorosensor Survey of the Columbia and Snake Rivers: Simultaneous Measurements of Chlorophyll, Dissolved Organics and Optical Attenuation,” Int. J. Remote Sensing 6, 1707 (1985). [CrossRef]
  30. S. W. Jeffrey, “Algal Pigment Systems,” in Primary Productivity in the Sea, P. G. Falkowski, Ed. (Plenum, New York, 1980). [CrossRef]
  31. R. J. Exton, W. M. Houghton, W. Esaias, R. C. Harriss, F. H. Farmer, H. H. White, “Laboratory Analysis of Techniques for Remote Sensing of Estuarine Parameters Using Laser Excitation,” Appl. Opt. 22, 54 (1983). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited