OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Vol. 25, Iss. 15 — Aug. 1, 1986
  • pp: 2584–2591

Oxygen- and air-broadened linewidths of CO2

Eric Arié, Nelly Lacome, Philippe Arcas, and Armand Levy  »View Author Affiliations


Applied Optics, Vol. 25, Issue 15, pp. 2584-2591 (1986)
http://dx.doi.org/10.1364/AO.25.002584


View Full Text Article

Enhanced HTML    Acrobat PDF (1047 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Oxygen-broadened linewidths have been measured at room temperature using a method of laser spectroscopy. By combining these parameters with previously measured nitrogen-broadening values, air-broadening parameters have been derived. The averaged experimental data for self-, N2, and O2 broadening have been compared to theoretical values calculated on the basis of an improved semiclassical model previously used for N2O. Quite satisfactory agreement is observed up to J ≃ 50.

© 1986 Optical Society of America

History
Original Manuscript: December 28, 1985
Published: August 1, 1986

Citation
Eric Arié, Nelly Lacome, Philippe Arcas, and Armand Levy, "Oxygen- and air-broadened linewidths of CO2," Appl. Opt. 25, 2584-2591 (1986)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-25-15-2584


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. S. R. Drayson et al., “Spectroscopy and Transmittance for the LIMS Experiment,” J. Geophys. Res. 89, 5141 (1984). [CrossRef]
  2. J. C. Gille et al., “Validation of Temperature Retrievals Obtained by the Limb Infrared Monitor of the Stratosphere (LIMS) Experiment on Nimbus 7,” J. Geophys. Res. 89, 5147 (1984). [CrossRef]
  3. L. S. Rothman, “AFGL Atmospheric Absorption Line Parameters Compilation: 1980 Version,” Appl. Opt. 20, 791 (1981). [CrossRef] [PubMed]
  4. L. S. Rothman et al., “AFGL Atmospheric Absorption Line Parameters Compilation: 1982 Edition,” Appl. Opt. 22, 2247 (1983). [CrossRef] [PubMed]
  5. N. Husson et al., “The GEISA Spectroscopic Line Parameters Data Bank in 1984,” Ann. Geophys. 4, 185 (1986).
  6. N. A. Scott, A. Chedin, “A Fast Line-by-Line Method for Atmospheric Absorption Computations: The Automatized Atmospheric Absorption Atlas,” J. Appl. Meteorol. 20, 802 (1981). [CrossRef]
  7. S. R. Drayson, C. Young, “Band Strength and Line Half-width of the 10.4 μ CO2 Band,” J. Quant. Spectrosc. Radiat. Transfer 7, 993 (1967). [CrossRef]
  8. T. K. McCubbin, T. R. Mooney, “A Study of the Strengths and Widths of Lines in the 9.4 and 10.4 μ CO2 Bands,” J. Quant. Spectrosc. Radiat. Transfer 8, 1255 (1968). [CrossRef]
  9. L. D. Tubbs, D. Williams, “Broadening of Infrared Absorption Lines at Reduced Temperatures: Carbon Dioxide,” J. Opt. Soc. Am. 62, 284 (1972). [CrossRef]
  10. E. Arié, N. Lacome, C. Rossetti, “Spectroscopie par Source Laser. 1. Etude Expérimentale des Intensités et Largeurs des Raies de la Transition 00°1-(10°,02°0)i de CO2,” Can. J. Phys. 50, 1800 (1972). [CrossRef]
  11. C. Boulet, E. Arié, J. P. Bouanich, N. Lacome, “Spectroscopie par Source Laser II. Etude Expérimentale de l’Elargissement des Raies de la Transition 00°1-(10°0, 02°0)i de CO2 Perturbé par N2,” Can. J. Phys. 50, 2178 (1972). [CrossRef]
  12. B. A. Boldyrev, K. P. Vasilevskii, “Intensity and Half-Width of CO2 Lines in the 14°1–00°0 Band,” Opt. Spectrosc. 35, 476 (1973).
  13. K. P. Vasilevskii, L. E. Danilochkina, V. A. Kazbanov, “Intensities and Halfwidths of CO2 lines in the Vibrational–Rotational Bands at 2 μm,” Opt. Spectrosc. 38, 499 (1975).
  14. C. Young, R. E. Chapman, “Line-Widths and Band Strengths for the 9.4 and 10.4 μm CO2 Bands,” J. Quant. Spectrosc. Radiat. Transfer 14, 679 (1974). [CrossRef]
  15. C. Young, R. W. Bell, R. E. Chapman, “Variation of N2-Broadened Collisional Width with Rotational Quantum Number for the 10.4 μm CO2 Band,” Appl. Phys. Lett. 20, 278 (1972). [CrossRef]
  16. R. A. Toth, “Wavenumbers, Strengths, and Self-Broadened Widths in CO2 at 3 μm,” J. Mol. Spectrosc. 53, 1 (1974). [CrossRef]
  17. T. W. Meyer, C. K. Rhodes, H. A. Haus, “High-Resolution Line Broadening and Collisional Studies in CO2 Using Nonlinear Spectroscopic Techniques,” Phys. Rev. A 12, 1993 (1975). [CrossRef]
  18. H. Oodate, T. Fujioka, “Measurements of 4.2 μm CO2 Pressure Broadening by Using an HBr Chemical Laser,” J. Chem. Phys. 68, 5494 (1978). [CrossRef]
  19. R. S. Eng, A. W. Mantz, “Tunable Diode Laser Spectroscopy of CO2 in the 10- to 15 μm Spectral Region,” J. Mol. Spectrosc. 74, 331 (1979). [CrossRef]
  20. F. P. J. Valero, C. B. Suarez, “Measurement at Different Temperatures of Absolute Intensities Line Half-Widths, and Broadening by Ar and N2 for the 30°1ii ← 00°0 Band of CO2,” J. Quant. Spectrosc. Radiat. Transfer 19, 579 (1978). [CrossRef]
  21. F. P. J. Valero, C. B. Suarez, R. W. Boese, “Intensities and Half-Widths at Different Temperatures for the 201iii ← 000 band of CO2 at 4854 cm−1,” J. Quant. Spectrosc. Radiat. Transfer 22, 93 (1979); “Absolute Intensities and Pressure Broadening Coefficients Measured at Different Temperatures for the 201ii ← 000 Band of 12C16O2 at 4978 cm−1”; 23, 337 (1980). [CrossRef] [PubMed]
  22. C. B. Suarez, F. P. J. Valero, “Intensities, Self-Broadening, and Broadening by Ar and N2 for the 301iii ← 000 Band of CO2 Measured at Different Temperatures,” J. Mol. Spectrosc. 71, 46 (1978). [CrossRef]
  23. M. O. Bulanin, V. P. Bulychev, E. B. Khodos, “Determination of the Parameters of the Vibrational–Rotational Lines in the 9.4 and 10.4 μm Bands of CO2 at Different Temperatures,” Opt. Spectrosc. 48, 403 (1980).
  24. V. Malathy Devi, B. Fridovich, G. D. Jones, D. G. S. Snyder, “Diode Laser Measurements of Strengths, Half-Widths, and Temperature Dependence of Half-Widths for CO2 Spectral Lines Near 4.5 μm,” J. Mol. Spectrosc. 105, 61 (1984). [CrossRef]
  25. W. G. Planet, G. L. Tettemer, J. S. Knoll, “Temperature Dependence of Intensities and Widths of N2-Broadened Lines in the 15 μm CO2 Band from Tunable Laser Measurements,” J. Quant. Spectrosc. Radiat. Transfer 20, 547 (1978). [CrossRef]
  26. W. G. Planet, G. L. Tettemer “Temperature-Dependent Intensities and Widths of N2-Broadened CO2 Lines at 15 μm from Tunable Laser Measurements,” J. Quant. Spectrosc. Radiat. Transfer 22, 345 (1979). [CrossRef]
  27. G. L. Tettemer, W. G. Planet, “Intensities and Pressure-Broadened Widths of CO2 R-Branch Lines at 15 μm from Tunable Laser Measurements,” J. Quant. Spectrosc. Radiat. Transfer 24, 343 (1980). [CrossRef]
  28. W. G. Planet, J. R. Aronson, J. F. Butler, “Measurements of the Widths and Strengths of Low-J Lines of the ν2 Q Branch of CO2,” J. Mol. Spectrosc. 54, 331 (1975). [CrossRef]
  29. R. A. McClatchey et al., “AFCRL Atmospheric Absorption Line Parameters Compilation,” Environmental Research Paper 434, AFCRL-TR-73-0096 (AFCRL, Bedford, MA, Jan.1973).
  30. R. R. Gamache, R. W. Davies, “Theoretical N2-, O2-, and Air Broadened Halfwidths of 16O3 Calculated by Quantum Fourier Transform Theory with Realistic Collision Dynamics,” J. Mol. Spectrosc. 109, 283 (1985). [CrossRef]
  31. J. L. Bufton, T. Itabe, L. L. Strow, C. L. Korb, B. M. Gentry, C. Y. Weng, “Frequency-Doubled CO2 Lidar Measurement and Diode Laser Spectroscopy of Atmospheric CO2,” Appl. Opt. 22, 2592 (1983). [CrossRef] [PubMed]
  32. N. Lacome, A. Levy, C. Boulet, “Air-Broadened Linewidths of Nitrous Oxide: An Improved Calculation,” J. Mol. Spectrosc. 97, 139 (1983). [CrossRef]
  33. N. Lacome, A. Levy, G. Guelachvili, “Fourier Transform Measurement of Self-, N2, and O2-broadening of N2O lines: Temperature Dependence of Linewidths,” Appl. Opt. 23, 425 (1984). [CrossRef] [PubMed]
  34. P. Arcas, E. Arié, C. Boulet, J. P. Maillard, “Self-Shifting of CO2 Lines in the 3ν3 Band at 1.43 μm,” J. Chem. Phys. 73, 5383 (1980). [CrossRef]
  35. W. A. Wensing, C. Noorman, H. A. Dijkerman, “Self-Broadening and Self-Shifting of Some Rotational Transitions of CF3H and N2O,” J. Phys. B 12, 1687 (1979). [CrossRef]
  36. S. C. M. Luijendink, “On the Shape of Pressure-Broadened Absorpion Lines in the Microwave Region II. Collision-Induced Width and Shift of Some Rotational Absorption Lines as a Function of Temperature,” J. Phys. B. 10, 1741 (1977). [CrossRef]
  37. W. A. Wensing, C. Noorman, H. A. Dijkerman, “Self-Shifting of Some Rotational Transitions of OCS and CH3CCH (Propyne). A Survey of Measurements on Shifting of Rotational Absorption Lines of Molecules,” J. Phys. B 14, 2813 (1981). [CrossRef]
  38. C. Thiébeaux, “Realisation d’une source monochromatique continue dans la région de 5 microns, par doublage des fréquences des raies d’un laser CO2, dans un cristal de tellure,” These 3ème cycle, Reims (1980).
  39. E. Arié, “Intensités et largeurs de raies de rotation-vibration de la transition, ν3–ν1 du gaz carbonique pur et perturbé par l‘argon et e’ azote,” U. Paris VI (1971).
  40. H. G. Reichle, C. Young, “Foreign-Gas-Broadening Effects in the 15 μm CO2 Bands,” Can. J. Phys. 50, 2662 (1972). [CrossRef]
  41. D. E. Burch, E. B. Singleton, D. Williams, “Absorption Line Broadening in the IR,” Appl. Opt. 1, 359 (1962). [CrossRef]
  42. N. Lacome, A. Levy, “A Parametric Deconvolution Method: Application to Two Bands of N2O in the 1.9 μm Region,” J. Mol. Spectrosc. 71, 175 (1978); “Line Strengths and Self-Broadened Linewidths of N2O in the 2 μm Region,” 85, 205 (1981) and references quoted therein. [CrossRef]
  43. C. Cousin, R. LeDoucen, J. P. Houdeau, C. Boulet, A. Henry, “Air Broadened Linewidths, Intensities and Spectral Line-shapes for CO2 at 4.3 μm in the Region of the AMTS Instrument,” Appl. Opt. 25, 2434 (1986). [CrossRef] [PubMed]
  44. D. Robert, J. Bonamy, “Short Range Force Effects in Semi-classical Molecular Line Broadening Calculations,” J. Phys. 40, 923 (1979). [CrossRef]
  45. P. W. Anderson, “Pressure Broadening in the Microwave and Infrared Regions,” Phys. Rev. 76, 647 (1949). [CrossRef]
  46. C. J. Tsao, B. Curnutte, “Line-Widths of Pressure-Broadened Spectral Lines,” J. Quant. Spectrosc. Radiat. Transfer 2, 41 (1962). [CrossRef]
  47. M. Oobatake, T. Ooi, “Determination of Energy Parameters in Lennard-Jones Potential from Second Virial Coefficients,” Prog. Theor. Phys. 48, 2132 (1972). [CrossRef]
  48. D. E. Stogryn, A. P. Stogryn, “Molecular Multipole Moments,” Mol. Phys. 11, 371 (1966). [CrossRef]
  49. R. P. Srivastava, H. R. Zaidi, “Self-Broadened Widths of Rotational Raman and Infrared Lines in CO2,” Can. J. Phys. 55, 549 (1977). [CrossRef]
  50. R. D. Amos, A. D. Buckingham, J. H. Williams, “Theoretical Studies of the Collision-Induced Raman Spectrum of Carbon Dioxide,” Mol. Phys. 39, 1519 (1980). [CrossRef]
  51. C. S. Murthy, K. Singer, I. R. McDonald, “Interaction Site Models for Carbon Dioxide,” Mol. Phys. 44, 135 (1981). [CrossRef]
  52. L. Pandey, C. P. K. Reddy, K. L. Sarkar, “Intermolecular Potentials from NMR Data: H2–N2O and H2–CO2,” Can. J. Phys. 61, 664 (1983). [CrossRef]
  53. M. A. Morrison, P. J. Hay, “Molecular Properties of N2 and CO2 as Functions of Nuclear Geometry: Polarizabilities, Quadrupole Moments, and Dipole Moments,” J. Chem. Phys. 70, 4034 (1979). [CrossRef]
  54. J. E. Harries, “Temperature Dependence of Collison-Induced Absorption in Gaseous N2,” J. Opt. Soc. Am. 69, 386 (1979). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 
Fig. 4
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited