OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Vol. 25, Iss. 20 — Oct. 15, 1986
  • pp: 3677–3682

Chlorophyll pigment concentration using spectral curvature algorithms: an evaluation of present and proposed satellite ocean color sensor bands

Frank E. Hoge and Robert N. Swift  »View Author Affiliations


Applied Optics, Vol. 25, Issue 20, pp. 3677-3682 (1986)
http://dx.doi.org/10.1364/AO.25.003677


View Full Text Article

Enhanced HTML    Acrobat PDF (966 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

During the past several years the symmetric three-band (460-, 490-, 520-nm) spectral curvature algorithm (SCA) has demonstrated rather accurate determination of chlorophyll pigment concentration using low-altitude airborne ocean color data. It is shown herein that the in-water asymmetric SCA, when applied to certain recently proposed OCI (NOAA-K and SPOT-3) and OCM (ERS-1) satellite ocean color bands, can adequately recover chlorophyll-like pigments. These airborne findings suggest that the proposed new ocean color sensor bands are in general satisfactorily, but not necessarily optimally, positioned to allow space evaluation of the SCA using high-precision atmospherically corrected satellite radiances. The pigment concentration recovery is not as good when existing Coastal Zone Color Scanner bands are used in the SCA. The in-water asymmetric SCA chlorophyll pigment recovery evaluations were performed using (a) airborne laser-induced chlorophyll fluorescence and (b) concurrent passive upwelled radiances. Data from a separate ocean color sensor aboard the aircraft were further used to validate the findings.

© 1986 Optical Society of America

History
Original Manuscript: March 24, 1986
Published: October 15, 1986

Citation
Frank E. Hoge and Robert N. Swift, "Chlorophyll pigment concentration using spectral curvature algorithms: an evaluation of present and proposed satellite ocean color sensor bands," Appl. Opt. 25, 3677-3682 (1986)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-25-20-3677


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. G. W. Grew, “Real-Time Test of MOCS Algorithm during Superflux 1980,” in The Chesapeake Bay Plume Study: Super-flux 1980, NASA CP 2188, J. W. Campbell, J. P. Thomas, Eds. (Langley Research Center, Hampton, VA, 1981).
  2. G. W. Grew, L. S. Mayo, “Ocean Color Algorithm for Remote Sensing of Chlorophyll,” NASA Tech. Paper 2164 (Langley Research Center, Hampton, VA, 1983).
  3. J. W. Campbell, W. E. Esaias, “Basis for Spectral Curvature Algorithms in Remote Sensing of Chlorophyll,” Appl. Opt. 22, 1084 (1983). [CrossRef] [PubMed]
  4. H. R. Gordon, A. Y. Morel, “Remote Assessment of Ocean Color for Interpretation of Satellite Visible Imagery, A Review,” in Lecture Notes on Coastal and Estuarine Studies (Springer-Verlag, New York, 1983), p. 30.
  5. H. R. Gordon, D. K. Clark, J. W. Brown, R. H. Evans, W. W. Broenkow, “Phytoplankton Pigment Concentrations in the Middle Atlantic Bight: Comparison of Ship Determinations and CZCS Estimates,” Appl. Opt. 22, 20 (1983). [CrossRef] [PubMed]
  6. F. E. Hoge, R. N. Swift, “Application of the NASA Airborne Oceanographic Lidar to the Mapping of Chlorophyll and Other Organic Pigments,” in Chesapeake Bay Plume Study Super-flux 1980, NASA Conf. Publ. 2188 (U.S. GPO, Washington, DC, 1981), p. 349.
  7. “Ocean Color Working Group,” a progress report to ESA Earth Observation Advisory Committee, European Space Agency Report ESA BR-20, Paris, France, June 1984.
  8. F. E. Hoge, R. E. Berry, R. N. Swift, “Active-Passive Airborne Ocean Color Measurement. 1: Instrumentation,” Appl. Opt. 25, 39 (1986). [CrossRef] [PubMed]
  9. F. E. Hoge, R. N. Swift, J. K. Yungel, “Active-Passive Airborne Ocean Color Measurement. 2: Applications,” Appl. Opt. 25, 48 (1986). [CrossRef] [PubMed]
  10. F. E. Hoge, R. N. Swift, “Airborne Simultaneous Spectroscopic Detection of Laser-Induced Water Raman Backscatter and Fluorescence from Chlorophyll a and Other Naturally Occurring Pigments,” Appl. Opt. 20, 3197 (1981). [CrossRef] [PubMed]
  11. F. E. Hoge, R. N. Swift, “Application of the NASA Airborne Oceanographic Lidar to the Mapping of Chlorophyll and Other Organic Pigments,” in Chesapeake Bay Plume Study Super-flux 1980, NASA Conf. Publ. 2188 (U.S. GPO, Washington, DC, 1981), p. 349.
  12. F. E. Hoge, R. N. Swift, “Airborne Dual Laser Excitation and Mapping of Phytoplankton Photopigments in a Gulf Stream Warm Core Ring,” Appl. Opt. 22, 2272 (1983). [CrossRef] [PubMed]
  13. F. E. Hoge, R. N. Swift, “Experimental Feasibility of the Airborne Measurement of Absolute Oil Fluorescence Spectral Conversion Efficiency,” Appl. Opt. 22, 37 (1983). [CrossRef] [PubMed]
  14. F. E. Hoge, R. N. Swift, “Oil Film Thickness Measurement Using Airborne Laser-Induced Water Raman Backscatter,” Appl. Opt. 19, 3269 (1980). [CrossRef] [PubMed]
  15. F. E. Hoge, R. N. Swift, “Absolute Tracer Dye Concentration Using Airborne Laser-Induced Water Raman Backscatter,” Appl. Opt. 20, 1191 (1981). [CrossRef] [PubMed]
  16. F. E. Hoge, R. N. Swift, “Airborne Detection of Oceanic Turbidity Cell Structure Using Depth-Resolved Laser-Induced Water Raman Backscatter,” Appl. Opt. 22, 3778 (1983). [CrossRef] [PubMed]
  17. F. E. Hoge, R. N. Swift, E. B. Frederick, “Water Depth Measurement Using an Airborne Pulsed Neon Laser System,” Appl. Opt. 19, 871 (1980). [CrossRef] [PubMed]
  18. F. E. Hoge, W. B. Krabill, R. N. Swift, “The Reflection of UV Laser Pulses from the Ocean,” Mar. Geod. 8, Nos. 1–4, 313 (1984). [CrossRef]
  19. J. L. Bufton, F. E. Hoge, R. N. Swift, “Airborne Measurements of Laser Backscatter from the Ocean Surface,” Appl. Opt. 22, 2603 (1983). [CrossRef] [PubMed]
  20. W. B. Krabill, J. G. Collins, L. E. Link, R. N. Swift, M. L. Butler, “Airborne Laser Topographic Mapping Results,” Photogram. Eng. Remote Sensing 50, 685 (1984).
  21. R. Nelson, W. B. Krabill, G. Maclean, “Determining Forest Canopy Characteristics Using Airborne Laser Data,” Remote Sensing Environ. 15, 201 (1984). [CrossRef]
  22. F. E. Hoge, R. N. Swift, J. K. Yungel, “Feasibility of Airborne Detection of Laser-Induced Fluorescence Emissions from Green Terrestrial Plants,” Appl. Opt. 22, 2991 (1983). [CrossRef] [PubMed]
  23. W. A. Hovis, J. S. Knoll, “Characteristics of an Internally Illuminated Calibration Sphere,” Appl. Opt. 22, 4004 (1983). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited