OSA's Digital Library

Applied Optics

Applied Optics


  • Vol. 25, Iss. 21 — Nov. 1, 1986
  • pp: 3810–3815

Multipass grating interferometer applied to line narrowing in excimer lasers

Jouni P. Partanen  »View Author Affiliations

Applied Optics, Vol. 25, Issue 21, pp. 3810-3815 (1986)

View Full Text Article

Enhanced HTML    Acrobat PDF (776 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



The line narrowing of excimer lasers is discussed. The theory for an optical two-effect intracavity line narrowing device, the multipass grating interferometer (MGI), is presented. An MGI contains a grating aligned in its second-order Littrow configuration and a mirror aligned parallel to the grating surface reflecting back the beam normal to the grating corresponding to the first-order diffraction. The Littrow grating is doing the coarse line narrowing, and the mirror aligned parallel to the grating has similar line narrowing properties as tilted intracavity Fabry-Perot etalons. An MGI is applied to a KrF laser cavity to achieve a linewidth of 0.03 cm−1.

© 1986 Optical Society of America

Original Manuscript: May 19, 1986
Published: November 1, 1986

Jouni P. Partanen, "Multipass grating interferometer applied to line narrowing in excimer lasers," Appl. Opt. 25, 3810-3815 (1986)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. J. R. Murray, J. Goldhar, D. Eimerl, A. Szoke, “Raman Pulse Compression of Excimer Lasers for Application to Laser Fusion,” IEEE J. Quantum Electron. QE-15, 342 (1979). [CrossRef]
  2. J. P. Partanen, M. J. Shaw, “High Power Forward Raman Amplifiers Employing Low Pressure Gases in Light Guides: I Theory and Applications,” submitted to J. Opt. Soc. Am. B (1986). [CrossRef]
  3. R. Fedosejevs, A. A. Offenberger, “Subnanosecond Pulses from a KrF Laser Pumped SF6 Brillouin Amplifier,” IEEE J. Quantum Electron. QE-21, 1558 (1985). [CrossRef]
  4. P. W. Smith, “Mode Selection in Lasers,” Proc. IEEE 60, 422 (1972). [CrossRef]
  5. T. J. Pacala, I. S. McDermid, J. B. Laudenslager, “Single Longitudinal Mode Operation of XeCl Laser,” Appl. Phys. Lett. 45, 507 (1984). [CrossRef]
  6. W. R. Leeb, “Losses Introduced by Tilting Intracavity Etalons,” Appl. Phys. 6, 267 (1975). [CrossRef]
  7. E. Armandillo, G. Giuliani, “Estimation of the Minimum Laser Linewidth Achievable with Grazing-Grating Configuration,” Opt. Lett. 8, 274 (1983). [CrossRef] [PubMed]
  8. M. G. Littman, “Single-Mode Operation of Grazing-Incidence Pulsed Dye Laser,” Opt. Lett. 3, 138 (1978). [CrossRef] [PubMed]
  9. M. G. Littman, “Single-Mode Pulsed Tunable Dye Laser,” Appl. Opt. 23, 4465 (1984). [CrossRef] [PubMed]
  10. T. W. Hänsch, “Repetitively Pulsed Tunable Dye Laser for High Resolution Spectroscopy,” Appl. Opt. 11, 895 (1972). [CrossRef] [PubMed]
  11. E. Armandillo, P. V. M. Lopatriello, G. Giuliani, “Single-Mode, Tunable Operation of a XeF Excimer Laser Employing an Original Interferometer,” Opt. Lett. 9, 327 (1984). [CrossRef] [PubMed]
  12. G. Giuliani, E. Palange, S. Loreti, G. Salvetti, “Multipass Grating Interferometer as Output Coupler for Tunable, Single-Mode Operation of Large-Bandwidth Lasers,” Opt. Lett. 10, 600 (1985). [CrossRef] [PubMed]
  13. I. Shosnan, N. N. Danon, U. P. Oppenheim, “Narrowband Operation of a Pulsed Dye Laser Without Intracavity Beam Expansion,” J. Appl. Phys. 48, 4495 (1977). [CrossRef]
  14. F. J. Duarte, “Multiple-Prism Littrow and Grazing-Incidence Pulsed CO2 Lasers,” Appl. Opt. 24, 1244 (1985). [CrossRef] [PubMed]
  15. R. S. Longhurst, Geometrical and Physical Optics (Longman Group, London, 1973).
  16. R. Petit, The Electromagnetic Theory of Gratings (Springer-Verlag, Berlin, 1980). [CrossRef]
  17. J. Goldhar, M. W. Taylor, J. R. Murray, “An Efficient Douple-Pass Raman Amplifier with Pump Intensity Averaging in a Light Guide,” IEEE J. Quantum Electron. QE-20, 772 (1984). [CrossRef]
  18. R. S. F. Chang, R. H. Lemberg, M. T. Duignan, N. Djeu, “Raman Beam Cleanup of Severely Aberrated Pump Laser,” IEEE J. Quantum Electron. QE-21, 477 (1985). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited