OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Vol. 25, Iss. 21 — Nov. 1, 1986
  • pp: 3838–3842

Pulsed and cw operation of helium–water vapor laser at 28 μm

Paul A. Rochefort, Eric Brannen, and Zdenek Kucerovsky  »View Author Affiliations


Applied Optics, Vol. 25, Issue 21, pp. 3838-3842 (1986)
http://dx.doi.org/10.1364/AO.25.003838


View Full Text Article

Enhanced HTML    Acrobat PDF (600 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

The operating characteristics of a water vapor–helium laser working at 28 μm are presented. Comparison is made of power output in continuous and pulsed operation for various gas mixtures and discharge currents for the same laser cavity.

© 1986 Optical Society of America

History
Original Manuscript: June 28, 1986
Published: November 1, 1986

Citation
Paul A. Rochefort, Eric Brannen, and Zdenek Kucerovsky, "Pulsed and cw operation of helium–water vapor laser at 28 μm," Appl. Opt. 25, 3838-3842 (1986)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-25-21-3838


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. W. S. Benedict, M. A. Pollack, W. J. Tomlinson, “The Water-Vapor Laser,” IEEE J. Quantum Electron. QE-5, 108 (1969). [CrossRef]
  2. G. D. Downey, D. W. Robinson, “Chemical Pumping of the Water Vapor Laser. II,” J. Chem. Phys. 6, 2854 (1976); J. Chem. Phys. 6, 2858 (1976). [CrossRef]
  3. A. B. Petersen, L. W. Braveman, C. Wittig, “H2O, NO and N2O Infrared Lasers Pumped Directly and Indirectly by Electronic-Vibrational Energy Transfer,” J. Appl. Phys. 48, 230 (1977). [CrossRef]
  4. A. Crocker, H. A. Gebbie, M. F. Kimmitt, L. E. S. Mathias, “Stimulated Emission in the Far Infra-Red,” Nature London 201, 250 (1964). [CrossRef]
  5. W. J. Sarjeant, Z. Kucerovsky, E. Brannen, “Excitation Processes and Relaxation Rates in the Pulsed Water Vapor Laser,” Appl. Opt. 11, 735 (1972). [CrossRef] [PubMed]
  6. W. J. Sarjeant, E. Brannen, “Enhancement of Laser Action in H2O by the Addition of Helium,” IEEE J. Quantum Electron. QE-5, 620 (1969). [CrossRef]
  7. J. P. Pichamuthu, J. C. Hassler, G. H. Sherman, P. D. Coleman, “The Role of Helium in the H2O Laser,” IEEE J. Quantum Electron. QE-9, 244 (1973). [CrossRef]
  8. P. Woskoboinikow, W. C. Jennings, “Improved CW Laser Action on the 118.6 and 220 μm H2O Transitions Using Helium and Hydrogen,” Appl. Phys. Lett. 22, 658 (1975). [CrossRef]
  9. Y. Yasuoka, P. Burlamacchi, S. Y. Wang, T. K. Grestafson, “Characteristics of a CW Water Vapor Laser at 118 and 28 μm,” IEEE J. Quantum Electron. QE-15, 614 (1979). [CrossRef]
  10. A. Morinaga, K. Tanaka, “Operating Characteristics and Discharge conditions of a cw 28 μm Water Vapor Laser,” IEEE J. Quantum Electron. QE-16, 406 (1980). [CrossRef]
  11. E. R. Mosburg, “A Study of the cw 28-μm Water-Vapor Laser,” IEEE J. Quantum Electron. QE-9, 843 (1973). [CrossRef]
  12. W. J. Sarjeant, “Submillimeter Gas Lasers,” MSc Thesis, U. Western Ontario (1968).
  13. E. Brannen, “Reflection Gratings as Elements in Far Infrared Lasers,” Proc. IEEE 53, 2134 (1965). [CrossRef]
  14. M. Hoeksema, W. J. Sarjeant, E. Brannen, “Far-Infrared Gas Lasers as Sources of Polarized Radiation,” IEEE J. Quantum Electron. 5, 477 (1969). [CrossRef]
  15. E. Brannen, M. Hoeksema, W. J. Sarjeant, “Linearly Polarized Monochromatic Radiation from a Water Vapor at 118.6 μm,” Can. J. Phys. 47, 597 (1969). [CrossRef]
  16. W. J. Sarjeant, Z. Kucerovsky, D. Rumbold, E. Brannen, “An Inexpensive Pyroelectric Detector for Pulsed and cw Infrared Detection,” Rev. Sci. Instrum. 41, 1890 (1970). [CrossRef]
  17. E. H. Putley, “Thermal Detectors,” in Optical and Infrared Detectors, R. J. Keyes, Ed. (Springer-Verlag, Berlin, 1980).
  18. E. Brannen, D. G. Rumbold, “Reflectivity and Polarization Characteristics of Reflection Echelette Gratings,” Appl. Opt. 8, 1506 (1969). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited