OSA's Digital Library

Applied Optics

Applied Optics


  • Vol. 25, Iss. 5 — Mar. 1, 1986
  • pp: 709–719

He–Ne and cw CO2 laser long-path systems for gas detection

William B. Grant  »View Author Affiliations

Applied Optics, Vol. 25, Issue 5, pp. 709-719 (1986)

View Full Text Article

Enhanced HTML    Acrobat PDF (1431 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



This paper describes the design and testing of a laboratory prototype dual He–Ne laser system for the detection of methane leaks from underground pipelines and solid-waste landfill sites using differential absorption of radiation backscattered from topographic targets. A laboratory-prototype dual cw carbon dioxide laser system also using topographic backscatter is discussed, and measurement results for methanol are given. With both systems, it was observed that the time-varying differential absorption signal was useful in indicating the presence of a gas coming from a nearby source. Limitations to measurement sensitivity, especially the role of speckle and atmospheric turbulence, are described. The speckle results for hard targets are contrasted with those from atmospheric aerosols. The Appendix gives appropriate laser lines and values of absorption coefficients for the hydrazine fuel gases.

© 1986 Optical Society of America

Original Manuscript: September 25, 1985
Published: March 1, 1986

William B. Grant, "He–Ne and cw CO2 laser long-path systems for gas detection," Appl. Opt. 25, 709-719 (1986)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. W. B. Grant, R. T. Menzies, “A Survey of Laser and Selected Optical Systems for Remote Measurement of Pollutant Gas Concentrations,” J. Air Pollut. Control Assoc. 33, 187 (1983). [CrossRef]
  2. D. K. Killinger, A. Mooradian, Eds. Laser Monitoring of the Atmosphere (Springer-Verlag, New York, 1983).
  3. R. M. Measures, Laser Remote Sensing (Wiley-Interscience, New York, 1984).
  4. H. J. Gerritsen, “Methane Gas Detection Using a Laser,” Trans. Am. Inst. Mining Eng. 235, 428 (1966).
  5. C. B. Moore, “Gas-laser Frequency Selection by Molecular Absorption,” Appl. Opt. 4, 252 (1965). [CrossRef]
  6. Z. Kucerovsky, E. Brannen, K. C. Paulekat, D. G. Rumbold, “Characteristics of a Laser System for Atmospheric Absorption and Air Pollution Experiments,” J. Appl. Meteorol. 12, 1387 (1973). [CrossRef]
  7. W. B. Grant, “Effect of Differential Spectral Reflectance on DIAL Measurements Using Topographic Targets,” Appl. Opt. 21, 2390 (1982). [CrossRef] [PubMed]
  8. R. M. Russ, “Detection of Atmospheric Methane Using a 2 Wavelength HeNe System,” Master's Thesis, MIT, Cambridge (1978).
  9. W. B. Grant, E. D. Hinkley, “Laser System for Natural Gas Detection—Phase I—Laboratory Feasibility Studies,” JPL Annual Report 5030-525 to the Gas Research Institute (1982).
  10. W. B. Grant, “Helium-Neon Laser Remote Measurement of Methane at Landfill Sites,” in Proceedings, Conference on Resource Recovery from Solid Wastes, S. Sengupta, K.-F. V. Wong, Eds. (Pergamon, London, 1982), p 265.
  11. I. Mendas, P. V. Cvijin, D. Ignjatijevic, “Conditions for the Harmonic-like and Efficient Amplitude Modulation of the cw Gaussian Laser Beam by Means of a Mechanical Chopper,” Appl. Phys. B 134, (1984).
  12. H. Ahlberg, S. Lundqvist, M. S. Shumate, U. Persson, “Analysis of Errors Caused by Optical Interference Effects in Wavelength-Diverse CO2 Laser Long-Path Systems,” Appl. Opt. 24, 3917 (1985). [CrossRef] [PubMed]
  13. J. W. Goodman, “Statistical Properties of Laser Speckle Patterns,” in Laser Speckle and Related Phenomena, J. C. Dainty, Ed. (Springer-Verlag, New York, 1975), Chap. 2. [CrossRef]
  14. P. H. Flamant, R. T. Menzies, M. J. Kavaya, “Evidence for Speckle Effects on Pulsed CO2 Lidar Signal Returns from Remote Targets,” Appl. Opt. 23, 1412 (1984). [CrossRef] [PubMed]
  15. G. Parry, “Speckle Patterns in Partially Coherent Light,” in Laser Speckle and Related Phenomena, J. C. Dainty, Ed. (Springer-Verlag, New York, 1975), Chap. 3. [CrossRef]
  16. P. H. Flamant, R. T. Menzies, “Mode Selection and Frequency Tuning by Injection in Pulsed TEA-CO2 Lasers,” IEEE J. Quantum Electron. QE-19, 821 (1983). [CrossRef]
  17. J. H. Shapiro, “Correlation Scales of Laser Speckle in Heterodyne Detection,” Appl. Opt. 24, 1883 (1985). [CrossRef] [PubMed]
  18. J. Y. Wang, P. A. Pruitt, “Laboratory Target Reflectance Measurements for Coherent Laser Radar Applications,” Appl. Opt. 23, 2559 (1984). [CrossRef] [PubMed]
  19. R. E. Hufnagel, “Propagation Through Atmospheric Turbulence,” in The Infrared Handbook, W. L. Wolfe, G. J. Zissis, Eds. (Office of Naval Research, Department of the Navy, Washington D. C., 1978), Chap. 6.
  20. M. L. Wesley, Z. I. Dersko, “Atmospheric Turbulence Parameters from Visual Resolution,” Appl. Opt. 14, 847 (1975). [CrossRef]
  21. R. S. Lawrence, G. R. Ochs, S. F. Clifford, “Measurements of Atmospheric Turbulence Relevant to Optical Propagation,” J. Opt. Soc. Am. 60, 826 (1970). [CrossRef]
  22. J. H. Churnside, H. T. Yura, “Velocity Measurement Using Laser Speckle Statistics,” Appl. Opt. 20, 3539 (1981). [CrossRef] [PubMed]
  23. J. H. Churnside, “Speckle from a Rotating Diffuse Object,” J. Opt. Soc. Am. 72, 1464 (1982). [CrossRef]
  24. J. F. Holmes, V. S. R. Gudimetla, “Variance of Intensity for a Discrete-Spectrum, Polychromatic Speckle Field After Propagation Through the Turbulent Atmosphere,” J. Opt. Soc. Am. 71, 1176 (1981). [CrossRef]
  25. R. R. Patty, G. M. Russwurm, W. A. McClenny, D. R. Morgan, “CO2 Laser Absorption Coefficients for Determining Ambient Levels of O3, NH3, and C2H4,” Appl. Opt. 13, 2850 (1974). [CrossRef] [PubMed]
  26. M. S. Shumate, R. T. Menzies, J. S. Margolis, L. G. Rosengren, “Water Vapor Absorption of Carbon Dioxide Laser Radiation,” Appl. Opt. 15, 2480 (1976). [CrossRef] [PubMed]
  27. N. Menyuk, D. K. Killinger, W. E. DeFeo, “Laser Remote Sensing of Hydrazine, MMH, and UDMH Using a Differential-Absorption CO2 Lidar,” Appl. Opt. 21, 2275 (1982). [CrossRef] [PubMed]
  28. E. R. Murray, J. E. van der Laan, “Remote Measurement of Ethylene Using a CO2 Differential-Absorption Lidar,” Appl. Opt. 17, 814 (1978). [CrossRef]
  29. D. K. Killinger, N. Menyuk, W. E. DeFeo, “Experimental Comparison of Heterodyne and Direct Detection for Pulsed Differential Absorption CO2 Lidar,” Appl. Opt. 22, 682 (1983). [CrossRef] [PubMed]
  30. P. Richter, I. Peczeli, “Signal Fluctuations in a cw Infrared Heterodyne Lidar,” Opt. Quantum Electron. 17, 93 (1985). [CrossRef]
  31. M. S. Shumate, R. T. Menzies, W. B. Grant, D. S. McDougal, “Laser Absorption Spectrometer: Remote Measurement of Troposperic Ozone,” Appl. Opt. 20, 545 (1981). [CrossRef] [PubMed]
  32. M. S. Shumate, W. B. Grant, R. T. Menzies, “Remote Measurement of Trace Gases with the JPL Laser Absorption Spectrometer,” in Optical and Laser Remote Sensing, D. K. Killinger, A. Mooradian, Eds. (Springer-Verlag, New York, 1983), p. 31.
  33. M. S. Shumate, S. Lundqvist, U. Persson, S. T. Eng, “Differential Reflectance of Natural and Man-made Materials at CO2 Laser Wavelengths,” Appl. Opt. 21, 2386 (1982). [CrossRef] [PubMed]
  34. K. Asai, T. Igarashi, “Interference from Differential Reflectance of Moist Topographic Targets in CO2 DIAL Ozone Measurement,” Appl. Opt. 23, 734 (1984). [CrossRef] [PubMed]
  35. W. Wiesemann, F. Lehmann, “Reliability of Airborne CO2 DIAL Measurements: Schemes for Testing Technical Performance and Reducing Interference from Differential Reflectance,” Appl. Opt. 24, 3481 (1985). [CrossRef] [PubMed]
  36. J. L. Bufton, T. Itabe, D. A. Grolemund, “Dual-Wavelength Correlation Measurements with an Airborne Pulsed Carbon Dioxide Lidar System,” Opt. Lett. 7, 584 (1982). [CrossRef] [PubMed]
  37. J. H. Churnside, H. T. Yura, “Speckle Statistics of Atmospherically Backscattered Laser Light,” Appl. Opt. 22, 2559 (1983). [CrossRef] [PubMed]
  38. T. Fukuda, Y. Matsuura, T. Mori, “Sensitivity of Coherent Range-Resolved Differential Absorption Lidar,” Appl. Opt. 23, 2026 (1984). [CrossRef] [PubMed]
  39. L. T. Molina, W. B. Grant, FTIR Spectrometer Determined Absorption Coefficients of Seven Hydrazine Fuel Gases: Implications for Laser Remote Sensing,” Appl. Opt. 23, 3893 (1984). [CrossRef] [PubMed]
  40. G. L. Loper, A. R. Calloway, M. A. Stamps, J. A. Gelbwachs, “Carbon Dioxide Laser Absorption Spectra and Low ppb Photoacoustic Detection of Hydrazine Fuels,” Appl. Opt. 19, 2726 (1980). [CrossRef] [PubMed]
  41. R. J. Brewer, C. W. Bruce, “Photoacoustic Spectroscopy of NH3 at the 9- and 10-μm 12C16O2 Laser Wavelengths” Appl. Opt. 17, 3746 (1978). [CrossRef] [PubMed]
  42. Also, turbulence can cause the beam to break up, expand, and contract.

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited