OSA's Digital Library

Applied Optics

Applied Optics


  • Vol. 25, Iss. 7 — Apr. 1, 1986
  • pp: 1235–1244

Scattering from nonspherical Chebyshev particles. I: cross sections, single-scattering albedo, asymmetry factor, and backscattered fraction

Alberto Mugnai and Warren J. Wiscombe  »View Author Affiliations

Applied Optics, Vol. 25, Issue 7, pp. 1235-1244 (1986)

View Full Text Article

Enhanced HTML    Acrobat PDF (1469 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



In this paper, we study the behavior of the scattering efficiency Qsca, the absorption efficiency Qabs, the single-scattering albedo ω, the asymmetry factor g, and the backscattered fraction for isotropically incident radiation β ̅ for randomly oriented rotationally symmetric nonspherical particles of radii r = r0[1 + ∊Tn(cosθs)], where Tn is a Chebyshev polynomial of order n. By taking n = 2,3,4,6,8, and 20, and = −0. 2 to 0.2 in steps of 0.05, twenty-three different shapes have been considered for these Chebyshev particles. The scattering calculations have been carried out using the Extended Boundary Conditions Method for individual particles with refractive index m = 1.5 0.02 i in the equal-volume-sphere size parameter range 1 ≤ x ≤ 25. Unshape-averaged and shape-averaged nonspherical single-scattering quantities have then been compared to corresponding size-averaged (over Δx = 0.1x) spherical results. It is shown that nonsphericity always increases Qabs for size parameters larger than ∼10, while it decreases g—and correspondingly increases β ̅—in the size range 8 ≤ x ≤ 15. Qsca seems to be on the average somewhat larger for nonspherical particles, while ω tends to be smaller. Concavity almost always enhances the spherical–nonspherical differences.

© 1986 Optical Society of America

Original Manuscript: October 2, 1985
Published: April 1, 1986

Alberto Mugnai and Warren J. Wiscombe, "Scattering from nonspherical Chebyshev particles. I: cross sections, single-scattering albedo, asymmetry factor, and backscattered fraction," Appl. Opt. 25, 1235-1244 (1986)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. G. Mie, “Beiträge zur Optik trüber Medien speziell kolloidaler Metallösungen,” Ann. Phys 25, 377 (1908). [CrossRef]
  2. J. R. Wait, “Scattering of a Plane Wave from a Circular Dielectric Cylinder at Oblique Incidence,” Can. J. Phys. 33, 189 (1955). [CrossRef]
  3. W. J. Wiscombe, “Mie Scattering Calculations: Advances in Technique and Fast, Vector-Speed Computer Codes,” NCAR Tech. Note NCAR/TN-140+STR (National Center for Atmospheric Research, Boulder, CO, 1979).
  4. W. J. Wiscombe, “Improved Mie Scattering Algorithms,” Appl. Opt. 19, 1505 (1980). [CrossRef] [PubMed]
  5. J. R. Hodkinson, “Light Scattering and Extinction by Irregular Particles Larger than the Wavelength,” in Electromagnetic Scattering, M. Kerker, Ed. (Pergamon, New York, 1963), p. 87.
  6. A. C. Holland, G. Gagne, “The Scattering of Polarized Light by Polydisperse Systems of Irregular Particles,” Appl. Opt. 9, 1113 (1970). [CrossRef] [PubMed]
  7. R. G. Pinnick, D. E. Carroll, D. J. Hofmann, “Polarized Light Scattered from Monodisperse Randomly Oriented Nonspherical Aerosol Particles: Measurements,” Appl. Opt. 15, 384 (1976). [CrossRef] [PubMed]
  8. A. Coletti, “Light Scattering by Nonspherical Particles: A Laboratory Study,” Aerosol Sci. 3, 39 (1984). [CrossRef]
  9. J. M. Greenberg, N. E. Pedersen, J. C. Pedersen, “Microwave Analogue to the Scattering of Light by Nonspherical Particles,” J. Appl. Phys. 32, 233 (1961). [CrossRef]
  10. R. H. Zerull, “Scattering Measurements of Dielectric and Absorbing Nonspherical Particles,” Beitr. Phys. Atmos. 49, 166 (1976).
  11. D. W. Schuerman, R. Wang, B. Gustafson, R. Schaefer, “Systematic Studies of Light Scattering. 1: Particle Shape,” Appl. Opt. 20, 4039 (1981). [CrossRef] [PubMed]
  12. W. J. Wiscombe, A. Mugnai, “Single Scattering from Nonspherical Chebyshev Particles: A Compendium of Calculations,” NASA Ref. Publ. 1157 (NASA/GSFC, Greenbelt, MD, Jan.1986).
  13. P. C. Waterman, “Matrix Formulation of Electromagnetic Scattering,” Proc. IEEE 53, 805 (1965). [CrossRef]
  14. P. C. Waterman, “Symmetry, Unitarity, and Geometry in Electromagnetic Scattering,” Phys. Rev. D 3, 825 (1971). [CrossRef]
  15. P. Barber, C. Yeh, “Scattering of Electromagnetic Waves by Arbitrarily Shaped Dielectric Bodies,” Appl. Opt. 14, 2864 (1975). [CrossRef] [PubMed]
  16. A. Mugnai, W. J. Wiscombe, “Scattering of Radiation by Moderately Nonspherical Particles,” J. Atmos. Sci. 37, 1291 (1980). [CrossRef]
  17. W. J. Wiscombe, A. Mugnai, “Scattering from Nonspherical Chebyshev Particles. 2: Phase Function and Degree of Polarization,” (in preparation).
  18. P. M. Morse, H. Feshbach, Methods of Theoretical Physics (McGraw-Hill, New York, 1953).
  19. R. F. Millar, “Rayleigh Hypothesis in Scattering Problems,” Electron. Lett. 5, 416 (1969). [CrossRef]
  20. R. F. Millar, “The Rayleigh Hypothesis and a Related Least-Squares Solution to Scattering Problems for Periodic Surfaces and Other Scatterers,” Radio Sci. 8, 785 (1973). [CrossRef]
  21. S. Asano, G. Yamamoto, “Light Scattering by a Spheroidal Particle,” Appl. Opt. 14, 29 (1975). [PubMed]
  22. S. Asano, M. Sato, “Light Scattering by Randomly Oriented Spheroidal Particles,” Appl. Opt. 19, 962 (1980). [CrossRef] [PubMed]
  23. P. Barber, “Differential Scattering of Electromagnetic Waves by Homogeneous Isotropic Dielectric Bodies,” Ph.D. Thesis, UCLA, Los Angeles (1973) (available from University Microfilms, Ann Arbor, MI).
  24. E. M. Patterson, D. A. Gillette, B. H. Stockton, “Complex Index of Refraction Between 300 and 700 nm for Saharan Aerosols,” J. Geophys. Res. 82, 3153 (1977). [CrossRef]
  25. H. E. Gerber, E. E. Hindman, “First International Workshop on Light Absorption by Aerosol Particles: Background, Activities, and Preliminary Results, 28 July-8 August 1980, Ft. Collins, Colo.,” Bull. Am. Meteorol. Soc. 62, 1321 (1981).
  26. J. B. Gillespie, S. G. Jennings, J. D. Lindberg, “Use of an Average Complex Refractive Index in Atmospheric Propagation Calculations,” Appl. Opt. 17, 989 (1978). [CrossRef] [PubMed]
  27. C. F. Bohren, D. R. Huffman, Absorption and Scattering of Light by Small Particles (Wiley, New York, 1983).
  28. P. Barber, “Resonance Electromagnetic Absorption by Nonspherical Dielectric Objects,” IEEE Trans. Microwave Theory Tech. MTT-25, 373 (1977). [CrossRef]
  29. H. M. Nussenzveig, W. J. Wiscombe, “Forward Optical Glory,” Opt. Lett. 5, 455 (1980). [CrossRef] [PubMed]
  30. W. J. Wiscombe, G. W. Grams, “The Backscattered Fraction in Two-Stream Approximations,” J. Atmos. Sci. 33, 2440 (1976). [CrossRef]
  31. E. P. Shettle, J. A. Weinman, “The Transfer of Solar Irradiance Through Inhomogeneous Turbid Atmospheres Evaluated by Eddington's Approximation,” J. Atmos. Sci. 27, 1048 (1970). [CrossRef]
  32. J. H. Joseph, W. J. Wiscombe, J. A. Weinman, “The Delta-Eddington Approximation for Radiative Flux Transfer,” J. Atmos. Sci. 33, 2452 (1976). [CrossRef]
  33. J. T. Kiehl, M. W. Ko, A. Mugnai, P. Chýlek, “Perturbation Approach to Light Scattering by Nonspherical Particles,” in Light Scattering by Irregularly Shaped Particles, D. W. Schuerman, Ed. (Plenum, New York, 1980), p. 135. [CrossRef]
  34. V. Erma, “Perturbation Solution for the Scattering of Electromagnetic Waves from Conductors of Arbitrary Shape. II. General Case,” Phys. Rev. 176, 1544 (1968). [CrossRef]
  35. P. Chýlek, “Extinction Cross Sections of Arbitrarily Shaped Randomly Oriented Nonspherical Particles,” J. Opt. Soc. Am. 67, 1348 (1977). [CrossRef]
  36. J. B. Pollack, J. N. Cuzzi, “Scattering by Nonspherical Particles of Size Comparable to a Wavelength: A New Semi-Empirical Theory and Its Application to Tropospheric Aerosols,” J. Atmos. Sci. 37, 868 (1980). [CrossRef]
  37. M. B. Baker, A. Coletti, “Uncertainties in the Evaluation of the Shortwave Radiative Properties of an Aerosol Layer due to Experimental and Numerical Errors,” Appl. Opt. 21, 2244 (1982). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3
Fig. 4 Fig. 5

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited