OSA's Digital Library

Applied Optics

Applied Optics


  • Vol. 26, Iss. 15 — Aug. 1, 1987
  • pp: 2988–2994

Model of the rotational Raman gain coefficients for N2 in the atmosphere

G. C. Herring and William K. Bischel  »View Author Affiliations

Applied Optics, Vol. 26, Issue 15, pp. 2988-2994 (1987)

View Full Text Article

Enhanced HTML    Acrobat PDF (760 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



A model for stimulated Raman scattering in the atmosphere is described for the pure rotational transitions in N2. This model accounts for the wavelength dependence of the N2 polarizability anisotropy, altitude and seasonal temperature variations in the atmosphere, and the O2 foreign-gas density broadening. This information is used to calculate the steady-state plane-wave Raman gain profile over the lower 100 km of the atmosphere. Over altitudes of 0–40 km, temperature variations produce 30% changes in the gain coefficients of 1 km−1 cm2 MW−1 for the strongest lines at Stokes wavelengths of 350 nm.

© 1987 Optical Society of America

Original Manuscript: February 2, 1987
Published: August 1, 1987

G. C. Herring and William K. Bischel, "Model of the rotational Raman gain coefficients for N2 in the atmosphere," Appl. Opt. 26, 2988-2994 (1987)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. V. E. Zuev, Laser Beams in the Atmosphere (Consultants Bureau, New York, 1982). [CrossRef]
  2. M. A. Henesian, C. D. Swift, J. R. Murray, “Stimulated Rotational Raman Scattering in Long Air Paths,” Opt. Lett. 10, 565 (1985). [CrossRef] [PubMed]
  3. G. C. Herring, M. J. Dyer, W. K. Bischel, “Temperature and Wavelength Dependence of the Rotational Raman Gain Coefficient in N2,” Opt. Lett. 11, 348 (1986). [CrossRef] [PubMed]
  4. M. Rokni, A. Flusberg, “Stimulated Rotational Raman Scattering in the Atmosphere,” IEEE. J. Quantum Electron. QE-22, 3671 (1986);see correction to be published in IEEE J. Quantum Electron.QE-23, 000 (July1987).
  5. P. M. Banks, G. Kockarts, Aeronomy (Academic, New York, 1973), Chap. 3.
  6. A. P. Hickman, J. A. Paisner, W. K. Bischel, “Theory of Multiwave Propagaton and Frequency Conversion in a Raman Medium,” Phys. Rev. A 33, 1788 (1986). [CrossRef] [PubMed]
  7. U.S. Standard Atmosphere, 1976, NOAA-S/T 76 1562 (National Oceanic and Atmospheric Administration, Washington DC, 1976).
  8. K. P. Huber, G. Herzberg, Molecular Spectra and Molecular Structure IV. Constants of Diatomic Molecules (Van Nostrand Reinhold, New York, 1979), p. 420.
  9. P. L. Varghese, R. K. Hanson, “Collisional Narrowing Effects on Spectral Line Shapes Measured at High Resolution,” Appl. Opt. 23, 2376 (1984). [CrossRef] [PubMed]
  10. G. C. Herring, M. J. Dyer, W. K. Bischel, “Temperature and Density Dependence of the Linewidths and Lineshifts of the Rotational Raman Lines in N2 and H2,” Phys. Rev. A 34, 1944 (1986). [CrossRef] [PubMed]
  11. A. Flusberg, “Stimulated Raman Scattering in the Presence of Strong Dispersion,” Opt. Commun. 38, 427 (1981). [CrossRef]
  12. E. A. Stappaerts, W. H. Long, H. Komine, “Gain Enhancement in Raman Amplifiers with Broadband Pumping,” Opt. Lett. 5, 4 (1980). [CrossRef] [PubMed]
  13. W. R. Trutna, Y. K. Park, R. L. Byer, “The Dependence of Raman Gain on Pump Laser Bandwidth,” IEEE J. Quantum Electron. QE-15, 648 (1979). [CrossRef]
  14. A. Flusberg, D. Kroff, C. Duzy, “The Effect of Weak Dispersion on Stimulated Raman Scattering,” IEEE J. Quantum Electron. QE-21, 232 (1985). [CrossRef]
  15. K. Jammu, G.St. John, H. Welsh, “Pressure Broadening of the Rotational Raman Lines of Some Simple Gases,” Can. J. Phys. 44, 797 (1966). [CrossRef]
  16. W. K. Bischel, G. Black, “Wavelength Dependence of Raman Scattering Cross Sections from 200-600 NM,” in AIP Conference Proceedings, No. 100, Subseries on Optical Science and Engineering, No. 3, Excimer Lasers-1983, C. K. Rhodes, H. Esser, H. Pummer, Eds.; (AIP, New York, 1983).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited