OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Vol. 26, Iss. 15 — Aug. 1, 1987
  • pp: 3026–3032

Correction scheme for spectral broadening by Rayleigh scattering in differential absorption lidar measurements of water vapor in the troposphere

Albert Ansmann and Jens Bosenberg  »View Author Affiliations


Applied Optics, Vol. 26, Issue 15, pp. 3026-3032 (1987)
http://dx.doi.org/10.1364/AO.26.003026


View Full Text Article

Enhanced HTML    Acrobat PDF (940 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

An evaluation scheme is given to calculate the water vapor content from data obtained by differential absorption lidar (DIAL), taking into account that the Rayleigh scattered part of the return signal shows considerable spectral broadening in contrast to the Mie scattered part. To correct for errors caused by this effect, information on the aerosol backscattering properties is necessary. Sensitivity analysis performed by model calculations show that it can be retrieved with sufficient accuracy from the off-line signal in the same way as for backscatter lidar. It can be expected that water vapor retrieval will be possible with good accuracy even in the most critical cases, where steep gradients in aerosol backscattering exist in the upper troposphere.

© 1987 Optical Society of America

History
Original Manuscript: March 17, 1986
Published: August 1, 1987

Citation
Albert Ansmann and Jens Bosenberg, "Correction scheme for spectral broadening by Rayleigh scattering in differential absorption lidar measurements of water vapor in the troposphere," Appl. Opt. 26, 3026-3032 (1987)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-26-15-3026


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. E. D. Hinkley, Ed., Laser Monitoring of the Atmosphere (Springer, Berlin, 1976). [CrossRef]
  2. C. L. Korb, C. Y. Weng, “The Theory and Correction of Finite Laser Bandwidth Effects in DIAL Experiments,” in Proceedings, Eleventh International Laser Radar Conference, Madison, WI (American Meteorological Society, 1982), Vol. 78.
  3. A. Ansmann, “Errors in Ground-Based Water-Vapor DIAL Measurements due to Doppler-Broadened Rayleigh Backscattering,” Appl. Opt. 24, 3476 (1985). [CrossRef] [PubMed]
  4. S. Ismail, E. V. Browell, G. Megie, P. Flamant, G. Grew, “Sensitivities in DIAL Measurements from Airborne and Space-borne Platforms,” in Conference Digest, Twelfth International Laser Radar Conference, Aix-en-Provence, France (1984), p. 431.
  5. R. M. Schotland, “Errors in Lidar Measurements of Atmospheric Gases by Differential Absorption,” J. Appl. Meteorol. 13, 71 (1974). [CrossRef]
  6. V. E. Zuev, Yu. S. Makushkin, V. N. Marichev, A. A. Mitsel, V. V. Zuev, “Lidar Differential Absorption and Scattering Technique: Theory,” Appl. Opt. 22, 3733 (1983). [CrossRef] [PubMed]
  7. E. E. Remsberg, L. L. Gordley, “Analysis of Differential Absorption Lidar from the Space Shuttle,” Appl. Opt. 17, 624 (1978). [CrossRef] [PubMed]
  8. C. Cahen, G. Megie, “A Spectral Limitation of the Range Resolved Differential Absorption Lidar Technique,” J. Quant. Spectrosc. Radiat. Transfer 25, 151 (1981). [CrossRef]
  9. F. G. Fernald, “Analysis of Atmospheric Lidar Observations: Some Comments,” Appl. Opt. 23, 652 (1984). [CrossRef] [PubMed]
  10. Y. Sasano, E. V. Browell, S. Ismail, “Errors Caused by Using a Constant Extinction/Backscattering Ratio in the Lidar Solution,” Appl. Opt. 24, 3929 (1985). [CrossRef] [PubMed]
  11. J. D. Klett, “Stable Analytical Inversion Solution for Processing Lidar Returns,” Appl. Opt. 20, 211 (1981). [CrossRef] [PubMed]
  12. R. A. McClatchey, R. V. Fern, J. E. A. Selby, F. E. Volz, J. S. Garing, “Optical Properties of the Atmosphere,” AFCRL-71-0279, Environmental Research Paper 354 (1971).
  13. R. P. Sandoval, R. L. Armstrong, “Rayleigh-Brillouin Spectra in Molecular Nitrogen,” Phys. Rev. A 13, 752 (1976). [CrossRef]
  14. G. Megie, R. T. Menzies, “Complementarity of UV and IR Differential Absorption Lidar for Global Measurements of Atmospheric Species,” Appl. Opt. 19, 1173 (1980). [CrossRef] [PubMed]
  15. T. D. Wilkerson, G. Schwemmer, B. Gentry, L. P. Giver, “Intensities and N2 Collision-Broadening Coefficients Measured for Selected H2O Absorption Lines Between 714 and 732 nm,” J. Quant. Spectrosc. Radiat. Transfer 22, 315 (1979). [CrossRef]
  16. S. H. Melfi, J. D. Spinhirne, S. H. Chou, S. P. Palm, “Lidar Observations of Vertically Organized Convection in the Planetary Boundary Layer over the Ocean,” J. Clim. Appl. Meteorol. 24, 806 (1985). [CrossRef]
  17. J. D. Klett, “Lidar Inversion with Variable Backscatter/Extinction Ratios,” Appl. Opt. 24, 1638 (1985). [CrossRef] [PubMed]
  18. E. V. Browell, S. Ismail, S. T. Shipley, “Ultraviolet DIAL Measurements of O3 Profiles in Regions of Spatially Inhomogeneous Aerosols,” Appl. Opt. 24, 2827 (1985). [CrossRef] [PubMed]
  19. A. Ansmann, “Fehleranalyse der Differential-Absorption-Li-dartechnik zur Ermittlung des troposphärischen Wasserdampfes anhand von Modellsimulationen,” Diplomarbeit, Meteorologisches Institut, U. Hamburg, Bundesstrasse 55, D-2000 Hamburg 13 (1984).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited