OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Vol. 26, Iss. 19 — Oct. 1, 1987
  • pp: 4058–4097

The HITRAN database: 1986 edition

L. S. Rothman, R. R. Gamache, A. Goldman, L. R. Brown, R. A. Toth, H. M. Pickett, R. L. Poynter, J.-M. Flaud, C. Camy-Peyret, A. Barbe, N. Husson, C. P. Rinsland, and M. A. H. Smith  »View Author Affiliations


Applied Optics, Vol. 26, Issue 19, pp. 4058-4097 (1987)
http://dx.doi.org/10.1364/AO.26.004058


View Full Text Article

Enhanced HTML    Acrobat PDF (3985 KB) Open Access





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

A description and summary of the latest edition of the AFGL HITRAN molecular absorption parameters database are presented. This new database combines the information for the seven principal atmospheric absorbers and twenty-one additional molecular species previously contained on the AFGL atmospheric absorption line parameter compilation and on the trace gas compilation. In addition to updating the parameters on earlier editions of the compilation, new parameters have been added to this edition such as the self-broadened halfwidth, the temperature dependence of the air-broadened halfwidth, and the transition probability. The database contains 348043 entries between 0 and 17,900 cm−1. A fortran program is now furnished to allow rapid access to the molecular transitions and for the creation of customized output. A separate file of molecular cross sections of eleven heavy molecular species, applicable for qualitative simulation of transmission and emission in the atmosphere, has also been provided.

© 1987 Optical Society of America

History
Original Manuscript: April 17, 1987
Published: October 1, 1987

Citation
L. S. Rothman, R. R. Gamache, A. Goldman, L. R. Brown, R. A. Toth, H. M. Pickett, R. L. Poynter, J.-M. Flaud, C. Camy-Peyret, A. Barbe, N. Husson, C. P. Rinsland, and M. A. H. Smith, "The HITRAN database: 1986 edition," Appl. Opt. 26, 4058-4097 (1987)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-26-19-4058


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. R. A. McClatchey, W. S. Benedict, S. A. Clough, D. E. Burch, R. F. Calfee, K. Fox, L. S. Rothman, J. S. Garing, “AFCRL Atmospheric Absorption Line Parameters Compilation,” AFCRL-TR-0096 (AFCRL, Bedford, MA, 1973).
  2. L. S. Rothman, “AFGL Atmospheric Absorption Line Parameters Compilation: 1980 Version,” Appl. Opt. 20, 791 (1981);L. S. Rothman et al., “AFGL Trace Gas Compilation: 1980 Version,” Appl. Opt. 20, 1323 (1981). [CrossRef] [PubMed]
  3. L. S. Rothman et al., “AFGL Atmospheric Absorption Line Parameters Compilation: 1982 Edition,” Appl. Opt. 22, 2247 (1983). [CrossRef] [PubMed]
  4. L. S. Rothman et al., “AFGL Trace Gas Compilation: 1982 Version,” Appl. Opt. 22, 1616 (1983). [CrossRef] [PubMed]
  5. N. Husson et al., “The GEISA Spectroscopic Line Parameters Data Bank in 1984,” Ann. Geophys. 4, 185 (1986).
  6. R. L. Poynter, H. M. Pickett, “Submillimeter, Millimeter, and Microwave Spectral Line Catalog,” Appl. Opt. 24, 2235 (1985). [CrossRef] [PubMed]
  7. J. K. Messer, F. C. DeLucia, P. Helminger, “Submillimeter Spectroscopy of the Major Isotopes of Water,” J. Mol. Spectrosc. 105, 139 (1984). [CrossRef]
  8. R. A. Toth, R. L. Poynter, “Line Positions and Line Strengths of the (010–000) and (020–010) Bands of HD16O and the (010–000) Band of HD18O,” in preparation.
  9. J.-M. Flaud, C. Camy-Peyret, R. A. Toth, Selected Constants: Water Vapour Line Parameters from Microwave to Medium Infrared (Pergamon, Oxford, 1981).
  10. R. A. Toth, Jet Propulsion Laboratory; unpublished data.
  11. R. R. Gamache, R. W. Davies, “Theoretical Calculations of N2-Broadened Halfwidths of H2O Using Quantum Fourier Transform Theory,” Appl. Opt. 22, 4013 (1983). [CrossRef] [PubMed]
  12. R. W. Davies, B. A. Oli, “Theoretical Calculations of H2O Linewidths and Pressure Shifts: Comparison of the Anderson Theory with Quantum Many-Body Theory for N2 and Air-Broadened Lines,” J. Quant. Spectrosc. Radiat. Transfer 20, 95 (1978). [CrossRef]
  13. R. W. Davies, GTE Laboratories; private communication (1980).
  14. L. S. Rothman, “Infrared Energy Levels and Intensities of Carbon Dioxide. Part 3,” Appl. Opt. 25, 1795 (1986). [CrossRef] [PubMed]
  15. R. B. Wattson, L. S. Rothman, “Determination of Vibrational Energy Levels and Parallel Band Intensities of 12C16O2 by Direct Numerical Diagonalization,” J. Mol. Spectrosc. 119, 83 (1986). [CrossRef]
  16. L. R. Brown, R. A. Toth, “Comparison of the Frequencies of NH3, CO2, H2O, N2O, CO, and CH4 as Infrared Calibration Standards,” J. Opt. Soc. Am. B 2, 842 (1985). [CrossRef]
  17. E. Arié, N. Lacome, P. Arcas, A. Levy, “Oxygen- and Air-Broadened Linewidths of CO2,” Appl. Opt. 25, 2584 (1986). [CrossRef] [PubMed]
  18. L. L. Strow, B. M. Gentry, “Rotational Collisional Narrowing in an Infrared CO2Q Branch Studied with a Tunable Diode Laser,” J. Chem. Phys. 84, 1149 (1986);J. Johns, National Research Council of Canada; private communication. [CrossRef]
  19. M. L. Hoke, S. A. Clough, W. Lafferty, B. W. Olson, “Line Coupling in Carbon Dioxide,” presented at the Forty-First Symposium on Molecular Spectroscopy (16–20 June 1986), paper TB9 (replacement).
  20. E. W. Smith, “Absorption and Dispersion in the O2 Microwave Spectrum at Atmospheric Pressures,” J. Chem. Phys. 74, 6658 (1981). [CrossRef]
  21. H. M. Pickett, E. A. Cohen, J. S. Margolis, “The Infrared and Microwave Spectra of Ozone for the (0,0,0), (1,0,0) and (0,0,1) States,” J. Mol. Spectrosc. 110, 186 (1985). [CrossRef]
  22. J.-M. Flaud, C. Camy-Peyret, V. M. Devi, C. P. Rinsland, M. A. H. Smith, “The ν1 and ν3 Bands of 16O18O16O: Line Positions and Intensities,” J. Mol. Spectrosc. 118, 334 (1986). [CrossRef]
  23. C. Camy-Peyret, J.-M. Flaud, A. Perrin, V. M. Devi, C. P. Rinsland, M. A. H. Smith, “The Hybrid-Type Bands ν1 and ν3 of 16O16O18O: Line Positions and Intensities,” J. Mol. Spectrosc. 118, 345 (1986). [CrossRef]
  24. J.-M. Flaud, C. Camy-Peyret, V. M. Devi, C. P. Rinsland, M. A. H. Smith, “The ν1 and ν3 Bands of 16O3: Line Positions and Intensities,” J. Mol. Spectrosc. (1987), in press.
  25. C. P. Rinsland, V. M. Devi, J.-M. Flaud, C. Camy-Peyret, M. A. H. Smith, G. M. Stokes, “Identification of 18O-Isotopic Lines of Ozone in Infrared Ground-Based Solar Absorption Spectra,” J. Geophys. Res. 90, 10719 (1985). [CrossRef]
  26. A. Barbe, C. Secroun, A. Goldman, J. R. Gillis, “Analysis of the ν1 + ν2 + ν3 Band of O3,” J. Mol. Spectrosc. 100, 377 (1983). [CrossRef]
  27. C. Meunier, P. Marche, A. Barbe, “Intensities and Air Broadening Coefficients of O3 in the 5- and 3-μm Regions,” J. Mol. Spectrosc. 95, 271 (1982). [CrossRef]
  28. A. Goldman, A. Barbe, “Line Parameters for the ν1 + ν2 + ν3 Bands of O3,” DU-Reims Collaborative Studies on Atmospheric Spectroscopy, Final Report (Oct.1985).
  29. H. M. Pickett et al., “The Vibrational and Rotational Spectra of Ozone for the (0,1,0) and (0,2,0) States,” J. Mol. Spectrosc. in press.
  30. A. Goldman, J. R. Gillis, A. Barbe, “Calculated Line Parameters for the 2ν216O3 Band,” Technical Report, Physics Department, U. Denver (1983).
  31. A. Goldman, R. D. Blatherwick, F. J. Murcray, J. W. VanAllen, F. H. Murcray, D. G. Murcray, “New Atlas of Stratospheric IR Absorption Spectra, Volume I: Line Positions and Identifications. Volume II: The Spectra,” U. Denver (Sept.1986).
  32. V. M. Devi, J.-M. Flaud, C. Camy-Peyret, C. P. Rinsland, M. A. H. Smith, “Line Positions and Intensities for the ν1 + ν2 and ν2 + ν3 Bands of 16O3,” J. Mol. Spectrosc. (1987), in press.
  33. R. R. Gamache, L. S. Rothman, “Theoretical N2-broadened Halfwidths of 16O3,” Appl. Opt. 24, 1651 (1985). [CrossRef] [PubMed]
  34. R. R. Gamache, R. W. Davies, “Theoretical N2-, O2-, and Air-Broadened Halfwidths of 16O3 Calculated by Quantum Fourier Transform Theory with Realistic Collision Dynamics,” J. Mol. Spectrosc. 109, 283 (1985). [CrossRef]
  35. M. A. H. Smith, K. B. Thakur, C. P. Rinsland, V. M. Devi, D. C. Benner, “Diode Laser Measurements in the ν1 Band of 16O3,” presented at the Forty-First Symposium on Molecular Spectroscopy, paper RF6, (16–20 June 1986);M. A. H. Smith, C. P. Rinsland, V. M. Devi, D. C. Benner, K. B. Thakur, “Measurements of Air-Broadened and Nitrogen-Broadened Halfwidths and Shifts of Ozone Lines near 9 μm,” J. Opt. Soc. Am. B (1987), submitted.
  36. R. A. Toth, “Line Strengths of N2O in the 1120–1440-cm−1 Region,” Appl. Opt. 23, 1825 (1984). [CrossRef] [PubMed]
  37. R. A. Toth, “Frequencies of N2O in the 1100- to 1440-cm−1 Region,” J. Opt. Soc. Am. B 3, 1263 (1986). [CrossRef]
  38. R. A. Toth, “N2O Vibration–Rotation Parameters Derived from Measurements in the 900–1090- and 1580–2380-cm−1 Regions,” J. Opt. Soc. Am. B 4, 357 (1987). [CrossRef]
  39. R. A. Toth, “Line Strengths (1100–2370 cm−1) Self-Broadened Linewidths and Frequency Shifts (1800–2630 cm−1) of N2O and Isotopic Variants,” in preparation.
  40. W. B. Olson, A. G. Maki, W. J. Lafferty, “Tables of N2O Absorption Lines for the Calibration of Tunable Infrared Lasers from 522 cm−1 to 657 cm−1 and from 1115 cm−1 to 1340 cm−1,” J. Chem. Phys. Ref. Data 10, 1065 (1981). [CrossRef]
  41. N. Lacome, A. Levy, G. Guelachvili, “Fourier Transform Measurement of Self-, N2-, and O2-Broadening of N2O Lines: Temperature Dependence of Linewidths,” Appl. Opt. 23, 425 (1984). [CrossRef] [PubMed]
  42. J. C. Hilico, M. Loete, L. R. Brown, “Line Strengths of the ν3–ν4 Band of Methane,” J. Mol. Spectrosc. 111, 119 (1985). [CrossRef]
  43. G. Tarrago, K. N. Rao, L. W. Pinkley, “Analysis of the ν3 Band of 12CH3D at 7.6 μm,” J. Mol. Spectrosc. 79, 31 (1980). [CrossRef]
  44. G. Tarrago, Laboratoire d'Infrarouge, France; unpublished data (1980).
  45. L. W. Pinkley, K. N. Rao, G. Tarrago, G. Poussigue, M. Dang-Nhu, “Analysis of the ν6 Band of 12CH3D at 8.6 μm,” J. Mol. Spectrosc. 68, 195 (1977). [CrossRef]
  46. G. Poussigue, G. Tarrago, P. Cardinet, A. Valentin, “Absorption of Monodeuteromethane 12CH3D at 4.5 μm. Analysis of the Overtone Band 2ν6,” J. Mol. Spectrosc. 82, 35 (1980). [CrossRef]
  47. G. Poussigue, E. Pascaud, J. P. Champion, G. Pierre, “Rotational Analysis of Vibrational Polyads in Tetrahedral Molecules. Stimultaneous Analysis of the Pentad Energy Levels of 12CH4,” J. Mol. Spectrosc. 93, 351 (1982). [CrossRef]
  48. G. Pierre, J. P. Champion, G. Guelachvili, E. Pascaud, G. Poussigue, “Rotational Analysis of Vibrational Polyads in Tetrahedral Molecules: Line Parameters of the Infrared Spectrum of 12CH4 in the Range 2250–3260 cm−1: Theory Versus Experiment,” J. Mol. Spectrosc. 102, 344 (1983). [CrossRef]
  49. R. A. Toth, L. R. Brown, R. H. Hunt, L. S. Rothman, “Line Parameters of Methane from 2385 to 3200 cm−1,” Appl. Opt. 20, 932 (1981). [CrossRef] [PubMed]
  50. L. R. Brown, Jet Propulsion Laboratory; unpublished data.
  51. D. J. E. Knight, G. J. Edwards, P. R. Pearce, N. R. Cross, “Measurement of the Frequency of the 3.39-μm Methane-Stabilized Laser to ±3 Parts in 1011,” IEEE Trans. Instrum. Meas. IM-29, 257 (1980). [CrossRef]
  52. L. R. Brown, L. S. Rothman, “Methane Line Parameters for the 2.3-μm Region,” Appl. Opt. 21, 2425 (1982). [CrossRef] [PubMed]
  53. L. R. Brown, “Laboratory Spectroscopy to Support Remote Sensing of Planetary Atmospheres: Experimental Line Parameters of Methane at 2.55 μm,” in Abstracts, Ninth Colloquium on High Resolution Molecular Spectroscopy, Riccione, Italy (Sept.1985).
  54. C. R. Pollock, F. R. Petersen, D. A. Jennings, J. S. Wells, A. G. Maki, “Absolute Frequency Measurements of the 2–0 Band of CO at 2.3 μm; Calibration Standard Frequencies from High Resolution Color Center Laser Spectroscopy,” J. Mol. Spectrosc. 99, 357 (1983). [CrossRef]
  55. J. S. Margolis, “Line Strength Measurements of the 2ν3 Band of Methane,” J. Quant. Spectrosc. Radiat. Transfer 13, 1097 (1973). [CrossRef]
  56. K. Fox, G. W. Halsey, D. E. Jennings, “High Resolution Spectrum and Analysis of 2ν3 of 13CH4 at 1.67 μm,” J. Mol. Spectrosc. 83, 213 (1980). [CrossRef]
  57. G. D. T. Tejwani, K. Fox, “Calculated Linewidths for CH4 Broadened by N2 and O2,” J. Chem. Phys. 60, 2021 (1974);G. D. T. Tejwani, K. Fox, “Calculated Self- and Foreign-Gas Broadened Linewidths for CH3D,” J. Chem. Phys. 61, 759 (1974). [CrossRef]
  58. P. Varanasi, L. P. Giver, F. P. J. Valero, “Thermal Infrared Lines of Methane Broadened by Nitrogen at Low Temperatures,” J. Quant. Spectrosc. Radiat. Transfer 30, 481 (1983). [CrossRef]
  59. P. Varanasi, L. P. Giver, F. P. J. Valero, “A Laboratory Study of the 8.65 μm Fundamental of 12CH3D at Temperatures Relevant to Titan's Atmosphere,” J. Quant. Spectrosc. Radiat. Transfer 30, 517 (1983). [CrossRef]
  60. V. M. Devi, C. P. Rinsland, M. A. H. Smith, D. C. Benner, “Measurements of 12CH4ν4 Band Halfwidths Using a Tunable Diode Laser System and a Fourier Transform Spectrometer,” Appl. Opt. 24, 2788 (1985). [CrossRef]
  61. V. M. Devi, C. P. Rinsland, M. A. H. Smith, D. C. Benner, “Tunable Diode Laser Measurements of Widths of Air- and Nitrogen-Broadened Lines in the ν4 Band of 13CH4,” Appl. Opt. 24, 3321 (1985). [CrossRef]
  62. F. J. Lovas, “Microwave Spectral Tables II. Triatomic Molecules,” J. Phys. Chem. Ref. Data 7, 1445 (1978). [CrossRef]
  63. M. Carlotti, G. DiLonardo, L. Fusina, B. Carli, F. Mencaraglia, “The Submillimeter-Wave Spectrum and Spectroscopic Constants of SO2 in the Ground State,” J. Mol. Spectrosc. 106, 235 (1984). [CrossRef]
  64. D. Patel, D. Margolese, T. R. Dyke, “Electric Dipole Moment of SO2 in Ground and Excited States,” J. Chem. Phys. 70, 2740 (1979). [CrossRef]
  65. C. Camy-Peyret, J.-M. Flaud, A. Perrin, K. N. Rao, “Improved Line Parameters for the ν3 and ν2 + ν3 − ν2 Bands of 14N16O2,” J. Mol. Spectrosc. 95, 72 (1982). [CrossRef]
  66. V. M. Devi et al., “Tunable Diode Laser Spectroscopy of NO2 at 6.2 μm,” J. Mol. Spectrosc. 93, 179 (1982). [CrossRef]
  67. A. Perrin, J.-M. Flaud, C. Camy-Peyret, “Calculated Line Positions and Intensities for the ν1 + ν3 and ν1 + ν2 + ν3 − ν2 Bands of 14N16O2,” Infrared Phys. 22, 343 (1982). [CrossRef]
  68. R. A. Toth, R. H. Hunt, “Line Strengths, Spin-Splittings, and Forbidden Transitions in the (101) Band of 14N16O2,” J. Mol. Spectrosc. 79, 182 (1980). [CrossRef]
  69. J.-M. Flaud, C. Camy-Peyret, V. Malathy Devi, P. P. Das, K. Narahari Rao, “Rao Diode Laser Spectra of the ν2 Band of 14N16O2: The (010) State of NO2,” J. Mol. Spectrosc. 84, 234 (1980). [CrossRef]
  70. V. M. Devi, P. P. Das, A. Bano, K. N. Rao, J.-M. Flaud, C. Camy-Peyret, J.-P. Chevillard, “Diode Laser Measurements of Intensities, N2-Broadening, and Self-Broadening Coefficients of Lines of the ν2 Band of 14N16O2,” J. Mol. Spectrosc. 88, 251 (1981). [CrossRef]
  71. W. C. Bowman, F. C. DeLucia, “The Millimeter and Submillimeter Spectrum of NO2: A Study of Electronic Effects in a Nonsinglet Light Asymmetric Rotor,” J. Chem. Phys. 77, 92 (1982). [CrossRef]
  72. R. L. Poynter, J. S. Margolis, “The ν2 Spectrum of NH3,” Mol. Phys. 51, 393 (1984). [CrossRef]
  73. A. G. Maki, W. B. Olson, A. Fayt, J. S. Wells, A. Goldman, “High Resolution Measurements and Analysis of the ν2, ν3, ν4, ν5, and 2ν9 Bands of Nitric Acid,” presented at Forty-First Symposium on Molecular Spectroscopy, Ohio State U. (1986), paper TE8.
  74. A. Goldman, J. R. Gillis, C. P. Rinsland, F. J. Murcray, D. G. Murcray, “Stratospheric HNO3 Quantification from Line-by-Line Nonlinear Least-Squares Analysis of High-Resolution Balloon-Borne Solar Absorption Spectra in the 870-cm−1 Region,” Appl. Opt. 23, 3252 (1984);D. G. Murcray, F. J. Murcray, F. H. Murcray, G. Vanasse, “Measurements of Atmospheric Emission at High Spectral Resolution,” J. Meteorol. Soc. Jpn. 63, 320 (1985). [CrossRef] [PubMed]
  75. A. Goldman, U. Denver unpublished data.
  76. A. Maki, “High Resolution Measurements of the ν2 Band of HNO3 and the ν3 Band of Trans-HONO,” J. Mol. Spectrosc.00, 000 (198X), in press.
  77. R. E. Thompson, J. H. Park, M. A. H. Smith, G. A. Harvey, J. M. Russell, “Nitrogen-Broadened Halfwidths of HF Lines in the 1–0 Band,” J. Mol. Spectrosc. 106, 251 (1984). [CrossRef]
  78. A. S. Pine, A. Fried, J. W. Elkins, “Spectral Intensities in the Fundamental Bands of HF and HC1,” J. Mol. Spectrosc. 109, 30 (1985);A. S. Pine, J. P. Looney, “N2 and Air Broadening in the Fundamental Bands of HF and HC1,” J. Mol. Spectrosc. 122, 41 (1987);A. S. Pine, A. Fried, “Self-Broadening in the Fundamental Bands of HF and HC1,” J. Mol. Spectrosc. 114, 148 (1985). [CrossRef]
  79. J. Ballard, W. B. Johnston, P. H. Moffat, D. T. Llewellyn-Jones, “Experimental Determination of the Temperature Dependence of Nitrogen Broadened Line Widths in the 1–0 Band of HC1,” J. Quant. Spectrosc. Radiat. Transfer 33, 365 (1985). [CrossRef]
  80. C. Chackerian, D. Goorvitch, L. P. Giver, “HC1 Vibrational Fundamental Band: Line Intensities and Temperature Dependence of Self-Broadening Coefficients,” J. Mol. Spectrosc. 113, 373 (1985). [CrossRef]
  81. W. H. Kirchhoff, “On the Calculation and Interpretation of Centrifugal Distortion Constants: A Statistical Basis for Model Testing: The Calculation of the Force Field,” J. Mol. Spectrosc. 41, 333 (1972). [CrossRef]
  82. K. Kondo, T. Oka, “Stark-Zeeman Effects on Asymmetric Top Molecules. Formaldehyde H2CO,” J. Phys. Soc. Jpn. 15, 307 (1960). [CrossRef]
  83. H. E. G. Singbeil et al., “The Microwave and Millimeter Wave Spectra of Hypochlorous Acid,” J. Mol. Spectrosc. 103, 466 (1984). [CrossRef]
  84. M. A. H. Smith, G. A. Harvey, G. L. Pellett, A. Goldman, D. J. Richardson, “Measurements of the HCN ν3 Band Broadened by N2,” J. Mol. Spectrosc. 105, 105 (1984). [CrossRef]
  85. P. L. Varghese, R. K. Hanson, “Tunable Diode Laser Measurements of Spectral Parameters of HCN at Room Temperature,” J. Quant. Spectrosc. Radiat. Transfer 31, 545 (1984). [CrossRef]
  86. P. Helminger, W. C. Bowman, F. C. DeLucia, “A Study of the Rotational-Torsional Spectrum of Hydrogen Peroxide between 80 and 700 GHz,” J. Mol. Spectrosc. 85, 120 (1981). [CrossRef]
  87. E. A. Cohen, H. Pickett, “The Dipole Moment of Hydrogen Peroxide,” J. Mol. Spectrosc. 87, 582 (1981). [CrossRef]
  88. J. J. Hillman, D. E. Jennings, W. B. Olson, A. Goldman, “High-Resolution Infrared Spectrum of Hydrogen Peroxide: The ν6 Fundamental Band,” J. Mol. Spectrosc. 117, 46 (1986). [CrossRef]
  89. V. M. Devi, C. P. Rinsland, M. A. H. Smith, D. C. Benner, B. Fridovich, “Tunable Diode Laser Measurements of Air-Broadened Linewidths in the ν6 Band of H2O2,” Appl. Opt. 25, 1844 (1986). [CrossRef] [PubMed]
  90. P. Varanasi, L. P. Giver, F. P. J. Valero, “Infrared Absorption by Acetylene in the 12–14 μm Region at Low Temperatures,” J. Quant. Spectrosc. Radiat. Transfer 30, 497 (1983). [CrossRef]
  91. C. P. Rinsland, A. Baldacci, K. N. Rao, “Acetylene Bands Observed in Carbon Stars: A Laboratory Study and an Illustrative Example of Its Application to IRC+10216,” Astrophys. J. Suppl. 49, 487 (1982). [CrossRef]
  92. V. M. Devi, D. C. Benner, C. P. Rinsland, M. A. H. Smith, B. D. Sidney, “Tunable Diode Laser Measurements of N2- and Air-Broadened Halfwidths: Lines in the (ν4 + ν5)0 Band of 12C2H2 Near 7.4 μm,” J. Mol. Spectrosc. 114, 49 (1985). [CrossRef]
  93. P. Varanasi, L. P. Giver, F. P. J. Valero, “Measurements of Nitrogen-Broadened Line Widths of Acetylene at Low Temperatures,” J. Quant. Spectrosc. Radiat. Transfer 30, 505 (1983). [CrossRef]
  94. R. R. Gamache, L. S. Rothman, “Temperature Dependence of N2-Broadened Halfwidths of Water Vapor: the Pure Rotation and ν2 Bands,” J. Mol. Spectrosc. (1987), submitted.
  95. W. G. Planet, G. L. Tettemer, J. S. Knoll, “Temperature Dependence of Intensities and Widths of N2-Broadened Lines in the 15 μm CO2 Band from Tunable Laser Measurements,” J. Quant. Spectrosc. Radiat. Transfer 20, 547 (1978);W. G. Planet, G. L. Tettemer, “Temperature Dependent Intensities and Widths of N2-Broadened CO2 Lines at 15 μm Band from Tunable Laser Measurements,” J. Quant. Spectrosc. Radiat. Transfer 22, 345 (1979);G. L. Tettemer, W. G. Planet, “Intensities and Pressure-Broadened Widths of CO2 R-Branch Lines at 15 μm from Tunable Laser Measurements,” J. Quant. Spectrosc. Radiat. Transfer 24, 343 (1980). [CrossRef]
  96. V. M. Devi, B. Fridovich, G. D. Jones, D. G. S. Snyder, “Diode Laser Measurements of Strengths, Half-Widths, and Temperature Dependence of Half-Widths for CO2 Spectral Lines Near 4.2 μm,” J. Mol. Spectrosc. 105, 61 (1984). [CrossRef]
  97. R. R. Gamache, “Temperature Dependence of N2-Broadened Halfwidths of Ozone,” J. Mol. Spectrosc. 114, 31 (1985). [CrossRef]
  98. P. Varanasi, SUNY-Stony Brook; private communication.
  99. P. Varanasi, “Measurement of Line Widths of CO of Planetary Interest at Low Temperatures,” J. Quant. Spectrosc. Radiat. Transfer 15, 191 (1975);P. Varanasi, S. Sarangi, “Measurements of Intensities and Nitrogen-Broadened Linewidths in the CO Fundamental at Low Temperatures,” J. Quant. Spectrosc. Radiat. Transfer 15, 473 (1975). [CrossRef]
  100. J. M. Hartmann, M. Y. Perrin, J. Taine, L. Rosenmann, “Diode Laser Measurements and Calculations of CO 1–0 P(4) Line-Broadening in the 294–765K Temperature Range,” J. Mol. Spectrosc., submitted.
  101. J. Bonamy, D. Robert, C. Boulet, “Simplified Models for the Temperature Dependence of Linewidths at Elevated Temperatures and Applications to CO Broadened by Ar and N2,” J. Quant. Spectrosc. Radiat. Transfer 31, 23 (1984). [CrossRef]
  102. V. M. Devi, B. Fridovich, G. D. Jones, D. G. S. Snyder, “Strengths and Lorentz Broadening Coefficients for Spectral Lines in the ν3 and ν2 + ν4 Bands of 12CH4 and 13CH4,” J. Mol. Spectrosc. 97, 333 (1983). [CrossRef]
  103. V. M. Devi, B. Fridovich, G. D. Jones, D. G. S. Snyder, A. C. Neuendorffer, “Temperature Dependence of the Widths of N2-Broadened Lines of the ν3 Band of 14N16O2,” Appl. Opt. 21, 1537 (1982). [CrossRef] [PubMed]
  104. D. G. Murcray, F. J. Murcray, A. Goldman, F. S. Bonomo, R. D. Blatherwick, “High Resolution Infrared Laboratory Spectra,” U. Denver, Physics Department (Apr.1984).
  105. S. T. Massie, A. Goldman, D. G. Murcray, J. C. Gille, “Approximate Absorption Cross Sections of F12, F11, ClONO2, N2O5, HNO3, CCl4, CF4, F21, F113, F114, and HNO4,” Appl. Opt. 24, 3426 (1985). [CrossRef] [PubMed]
  106. A. Goldman, C. Deroche, “Line Parameters for F12 in the 920 cm−1 Region,” U. Denver, Physics Department (July1986).
  107. J. W. Elkihs, R. L. Sams, J. Wen, “Measurements of the Temperature Dependence on the Infrared Band Strengths and Shapes for Halocarbons F-11 and F-12,” Natl. Bur. Stand. U.S. Report 553-K-86 (1986).
  108. V. G. Kunde et al., “Atmospheric Infrared Emission of ClONO2 Observed by a Balloon-Borne Fourier Spectrometer,” AGU Fall Meeting (1986).
  109. C. P. Rinsland et al., “Tentative Identification of the 780-cm−1ν4 Band Q Branch of Chlorine Nitrate in High-Resolution Solar Absorption Spectra of the Stratosphere,” J. Geophys. Res. 90, 7931 (1985). [CrossRef]
  110. J.-Y. Mandin, J.-P. Chevillard, C. Camy-Peyret, J.-M. Flaud, J. W. Brault, “The High-Resolution Spectrum of Water Vapor between 13200 and 16500 cm−1,” J. Mol. Spectrosc. 116, 167 (1986);C. Camy-Peyret et al., “The High Resolution Spectrum of Water Vapor Between 16500 and 25250 cm−1,” J. Mol. Spectrosc. 113, 208 (1985). [CrossRef]
  111. J. Johns, National Research Council of Canada; private communication.
  112. V. Dana, U. Pierre et Marie Curie, France; private communication.
  113. M. P. Esplin, Stewart Radiance Laboratory; private communication.
  114. D. Reuter, D. E. Jennings, J. W. Brault, “The v = 1 ← 0 Quadrupole Spectrum of N2,” J. Mol. Spectrosc. 115, 294 (1986). [CrossRef]
  115. L. R. Brown, C. B. Farmer, C. P. Rinsland, R. A. Toth, “Molecular Line Parameters for the Atmospheric Trace Molecule Spectroscopy (ATMOS) Experiment,” submitted to Appl. Opt., 1987. [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited