OSA's Digital Library

Applied Optics

Applied Optics


  • Vol. 26, Iss. 19 — Oct. 1, 1987
  • pp: 4323–4329

Reflectance spectra of terrestrial surface materials at CO2 laser wavelengths: effects on DIAL and geological remote sensing

P. Vujkovic Cvijin, D. Ignjatijevic, I. Mendas, M. Sreckovic, L. Pantani, and I. Pippi  »View Author Affiliations

Applied Optics, Vol. 26, Issue 19, pp. 4323-4329 (1987)

View Full Text Article

Enhanced HTML    Acrobat PDF (929 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Measurements of spectral reflectance of terrestrial surface materials at CO2 laser wavelengths are reported. Implications on measurement accuracy of long-path airborne differential absorption lidar for atmospheric gas concentration monitoring are discussed. It is also shown that reflectance spectra of most of the terrestrial surface materials are distinguishable enough to enable material identification by remote reflectance measurements at several selected laser wavelengths. This possibility introduces new prospects for active geological (and possibly agricultural) remote sensing.

© 1987 Optical Society of America

Original Manuscript: February 11, 1987
Published: October 1, 1987

P. Vujkovic Cvijin, D. Ignjatijevic, I. Mendas, M. Sreckovic, L. Pantani, and I. Pippi, "Reflectance spectra of terrestrial surface materials at CO2 laser wavelengths: effects on DIAL and geological remote sensing," Appl. Opt. 26, 4323-4329 (1987)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. D. K. Killinger, A. Mooradian, Eds., Optical and Laser Remote Sensing (Springer, Berlin, 1983).
  2. W. B. Grant, R. T. Menzies, “A Survey of Laser and Selected Optical Systems for the Remote Measurements of Pollutant and Gas Concentrations,” J. Air Pollut. Control Assoc. 33, 187 (1983).
  3. D. K. Killinger, N. Menyuk, “Remote Probing of the Atmosphere Using a CO2 DIAL System,” IEEE J. Quantum Electron. QE-17, 1917 (1981).
  4. W. B. Grant, “He–Ne and cw CO2 Laser Long-Path Systems for Gas Detection,” Appl. Opt. 25, 709 (1986).
  5. R. T. Menzies, M. S. Shumate, “Remote Measurements of Ambient Air Pollutants with a Bistatic Laser System,” Appl. Opt. 15, 2080 (1976).
  6. R. T. Menzies, M. S. Shumate, “Tropospheric Ozone Distributions Measured with an Airborne Laser Absorption Spectrometer,” J. Geophys. Res. 83, 4039 (1978).
  7. M. S. Shumate, R. T. Menzies, W. B. Grant, D. S. McDougal, “Laser Absorption Spectrometer: Remote Measurement of Tropospheric Ozone,” Appl. Opt. 20, 545 (1981).
  8. W. B. Grant, “Effect of Differential Spectral Reflectance on DIAL Measurements Using Topographic Targets,” Appl. Opt. 21, 2390 (1982).
  9. N. Menyuk, D. K. Killinger, “Assessment of Relative Error Sources in IR DIAL Measurement Accuracy,” Appl. Opt. 22, 2690 (1983).
  10. M. S. Shumate, S. Lundqvist, U. Persson, S. T. Eng, “Differential Reflectance of Natural and Man-Made Materials at CO2 Laser Wavelengths,” Appl. Opt. 21, 2386 (1982).
  11. W. Wiesemann, R. Beck, W. Englisch, K. Gurs, “In-Flight Test of a Continuous Laser Remote Sensing System,” Appl. Phys. 15, 257 (1978).
  12. K. Asai, T. Igarashi, “Interference from Differential Reflectance of Moist Topographic Targets in CO2 DIAL Ozone Measurement,” Appl. Opt. 23, 734 (1984).
  13. W. Wiesemann, F. Lehmann, “Reliability of Airborne CO2 DIAL Measurements: Schemes for Testing Technical Performance and Reducing Interference from Differential Reflectance,” Appl. Opt. 24, 3481 (1985).
  14. W. Wiesemann, F. Lehmann, Ch. Werner, “Probing of the Earth's Surface and the Atmosphere with an Airborne Laser Spectrometer,” Infrared Phys. 25, 467 (1985).
  15. F. Lehmann, C. Werner, W. Wiesemann, “LIMES: An Optical Multisensor Combining Mid-IR Laserscanner and Multispectralscanner,” in Proceedings, EARSeL/ESA Symposium on European Remote Sensing Opportunities,Strasburg, ESA SP-233 (May 1985), p. 115.
  16. P. Vujkovic Cvijin, D. Ignjatijevic, M. Sreckovic, L. Pantani, I. Pippi, “Spectral Reflectance of Topographic Target Surface Materials: Implications on Wavelength-Scanning CO2 Laser-Based Lidars,” in Proceedings, Twelfth International Laser Radar Conference,Aix-en-Provence (1984), p. 357.
  17. J. E. Eberhardt, J. G. Haub, A. W. Pryor, “Reflectivity of Natural and Powdered Minerals at CO2 Laser Wavelengths,” Appl. Opt. 24, 388 (1985).
  18. A. B. Kahle, M. S. Shumate, B. D. Nash, “Active Airborne Infrared Laser System for Identification of Surface Rock and Minerals,” Geophys. Res. Lett. 11, 1149 (1984).
  19. D. Ignjatijevic, P. Vujkovic Cvijin, M. Sreckovic, I. Pippi, “A Simple Microcomputer-Controlled CO2 Laser Wavelength Tuning System,” Opt. Laser Technol. 17, 96 (1985).
  20. J. F. Snell, “Radiometry and Photometry,” inHandbook of Optics, W. G. Driscoll, W. Vaughan, Eds. (McGraw-Hill, New York, 1978).
  21. W. W. Wendlandt, H. G. Hecht, Reflectance Spectroscopy (Interscience, New York, 1966).
  22. J. T. Agnew, R. B. McQuistan, “Experiments Concerning Infrared Diffuse Reflectance Standards in the Range 0.8 to 20.0 Microns,” J. Opt. Soc. Am. 43, 999 (1953).
  23. M. J. Kavaya, R. T. Menzies, D. A. Haner, U. P. Oppenheim, P. H. Flamant, “Target Reflectance Measurements for Calibration of Lidar Atmospheric Backscatter Data,” Appl. Opt. 22, 2619 (1983).
  24. D. B. Nash, “Mid-Infrared Reflectance Spectra (2.3–22μm) of Sulfur, Gold, KBr, and Halon,” Appl. Opt. 25, 2427 (1986).
  25. R. K. Vincent, “The Potential Role of Thermal Infrared Multi-spectral Scanners in Geological Remote Sensing,” Proc.IEEE 63, 137 (1975).
  26. P. Vujkovic Cvijin, N. Konjevic, “Molecular Air Pollution Monitoring by Pulsed CO2 Laser-Based Long-Path Technique,” Spectrosc. Lett. 13, 861 (1980).
  27. R. W. Stewart, J. L. Bufton, “Development of a Pulsed 9.5 Micrometer Lidar for Regional Scale Ozone Measurement,” Opt. Eng. 19, 503 (1980).
  28. K. Asai, T. Itabe, T. Igarashi, “Range-Resolved Measurements of Atmospheric Ozone Using a Differential Absorption CO2 Laser Radar,” Appl. Phys. Lett. 35, 60 (1979).
  29. E. R. Murray, R. D. Hake, J. E. van der Laan, J. G. Hawley, “Atmospheric Water Vapor Measurements with an Infrared (10 μm) Differential-Absorption LIDAR System,” Appl. Phys. Lett. 28, 542 (1976).
  30. P. W. Baker, “Atmospheric Water Vapor Differential Absorption Measurements on Vertical Paths with a CO2 Lidar,” Appl. Opt. 22, 2257 (1983).
  31. E. R. Murray, J. E. van der Laan, “Remote Measurement of Ethylene Using a CO2 Differential-Absorption Lidar,” Appl. Opt. 17, 814 (1978).
  32. K. W. Rothe, “Monitoring of Various Atmospheric Constituents Using a CW Chemical Hydrogen/Deuterium Fluoride Laser and a Pulsed Carbon Dioxide Laser,” Radio Electron. Eng. 50, 567 (1980).
  33. B. Marthinsson, J. Hohansson, S. T. Eng, “Air Pollution Monitoring with a Computer-Controlled CO2-Laser Long-Path Absorption System,” Opt. Quantum Electron. 12, 327 (1980).
  34. S. Lundqvist, C-O. Fait, U. Persson, B. Marthinsson, S. T. Eng, “Air Pollution Monitoring with a Q-Switched CO2-Laser Lidar Using Heterodyne Detection,” Appl. Opt. 20, 2534 (1981).
  35. N. Menyuk, D. K. Killinger, W. E. DeFeo, “Laser Remote Sensing of Hydrazine, MMH, and UDMH Using a Differential-Absorption CO2 Lidar,” Appl. Opt. 21, 2275 (1982).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited