OSA's Digital Library

Applied Optics

Applied Optics


  • Vol. 26, Iss. 19 — Oct. 1, 1987
  • pp: 4330–4338

Mobile remote sensing system for atmospheric monitoring

Hans Edner, Kent Fredriksson, Anders Sunesson, Sune Svanberg, Leif Unéus, and Wilhelm Wendt  »View Author Affiliations

Applied Optics, Vol. 26, Issue 19, pp. 4330-4338 (1987)

View Full Text Article

Enhanced HTML    Acrobat PDF (1465 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



A mobile optical remote sensing system for environmental monitoring is described. The system, housed in a full-size truck with a laboratory floor surface of 6.0 × 2.3 m2, is mainly intended for differential absorption lidar (DIAL) applications but can also be used for laser-induced fluorescence monitoring and for absorption measurements using classical light sources. The system has a 40-cm diam receiving telescope and a fully steerable flat mirror in a transmitting/receiving dome. A Nd:YAG-pumped dye laser with auxiliary nonlinear frequency conversion is the preferred transmitter in DIAL measurements. Measurement examples for atmospheric SO2 and NO2 monitoring with automatic concentration map drawings are given and further uses are discussed.

© 1987 Optical Society of America

Original Manuscript: March 31, 1987
Published: October 1, 1987

Hans Edner, Kent Fredriksson, Anders Sunesson, Sune Svanberg, Leif Unéus, and Wilhelm Wendt, "Mobile remote sensing system for atmospheric monitoring," Appl. Opt. 26, 4330-4338 (1987)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. D. K. Killinger, A. Mooradian, Eds., Optical and Laser Remote Sensing (Springer-Verlag, Heidelberg, 1983).
  2. R. M. Measures, Laser Remote Sensing (Wiley-Interscience, New York, 1984).
  3. U. Platt, D. Perner, “Measurements of Atmospheric Trace Gases by Long Path Differential UV/Visible Absorption Spectroscopy,” in Ref. 1.
  4. H. Edner, A. Sunesson, S. Svanberg, L. Unéus, S. Wallin, “Differential Optical Absorption Spectroscopy System Used for Atmospheric Mercury Monitoring,” Appl. Opt. 25, 403 (1986). [CrossRef] [PubMed]
  5. K. Fredriksson, B. Galle, K. Nyström, S. Svanberg, “Lidar System Applied in Atmospheric Pollution Monitoring,” Appl. Opt. 18, 2998 (1979). [CrossRef] [PubMed]
  6. K. Fredriksson, B. Galle, K. Nyström, S. Svanberg, “Mobile Lidar System for Environmental Probing,” Appl. Opt. 20, 4181 (1981). [CrossRef] [PubMed]
  7. K. Fredriksson, S. Svanberg, “Pollution Monitoring Using Nd:YAG Based Lidar Systems,” in Ref. 1.
  8. A.-L. Egebäck, K. A. Fredriksson, H. M. Hertz, “DIAL Techniques for the Control of Sulfur Dioxide Emissions,” Appl. Opt. 23, 722 (1984). [CrossRef] [PubMed]
  9. K. A. Fredriksson, H. M. Hertz, “Evaluation of the DIAL Technique for Studies on NO2 Using a Mobile Lidar System,” Appl. Opt. 23, 1403 (1984). [CrossRef] [PubMed]
  10. K. Fredriksson, “Conclusions from the Evaluation and Testing of the Swedish Mobile Lidar System,” Report SNV PM1639 (1982).
  11. H. Edner, S. Svanberg, L. Unéus, W. Wendt, “Gas-Correlation Lidar,” Opt. Lett. 9, 493 (1984). [CrossRef] [PubMed]
  12. P. S. Andersson, S. Montán, S. Svanberg, “Remote Sample Characterization Based on Fluorescence Monitoring,” Appl. Phys. B43,to be published 1987).
  13. M. Aldén, S. Wallin, “CARS Experiments in a Full-Scale (10 × 10 m) Industrial Coal Furnace,” Appl. Opt. 24, 3434 (1985). [CrossRef] [PubMed]
  14. J. Kamme, “Differential Optical Absorption Spectroscopy (DOAS) and Differential Absorption Lidar (DIAL) Applied to Atmospheric Mercury Monitoring,” Diploma Paper, Lund Reports on Atomic Physics, LRAP-65 (1986).
  15. R. J. Allen, W. E. Evans, “Laser Radar (LIDAR) for Mapping Aerosol Structure,” Rev. Sci. Instrum. 43, 1422 (1972). [CrossRef]
  16. D. J. Brassington, “Sulfur Dioxide Absorption Cross-Section Measurements from 290 nm to 317 nm,” Appl. Opt. 20, 3774 (1981). [CrossRef] [PubMed]
  17. B. Galle, A. Sunesson, W. Wendt, “NO2-Mapping Using Laser-Radar Techniques,” submitted to Atmospheric Environment.
  18. Q. Bristow, I. R. Jonasson, “Vapour Sensing for Mineral Exploration,” Can. Min. J. 93, 39 (1972).
  19. V. Z. Fursov, N. B. Voltson, I. Khvalovsky, “Results of a Study of Mercury Vapour in the Tashkent Earthquake Zone,” Dokl. Akad. Nauk SSSR 179, 208 (1968).
  20. J. C. Varekamp, P. R. Buseck, “Hg Anomalies in Soils: a Geochemical Exploration Method for Geothermal Areas,” Geothermics 12, 29 (1983). [CrossRef]
  21. F. E. Hoge, R. N. Swift, “Airborne Simultaneous Spectroscopic Detection of Laser-Induced Water Raman Backscatter and Fluorescence from Chlorophyll a and Other Naturally Occurring Pigments,” Appl. Opt. 20, 3197 (1981). [CrossRef] [PubMed]
  22. S. Montán, S. Svanberg, “A System for Industrial Surface Monitoring Utilizing Laser-Induced Fluorescence,” Appl. Phys. B 38, 241 (1985). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article

OSA is a member of CrossRef.

CrossCheck Deposited