OSA's Digital Library

Applied Optics

Applied Optics


  • Vol. 27, Iss. 11 — Jun. 1, 1988
  • pp: 2111–2126

Intensity images and statistics from numerical simulation of wave propagation in 3-D random media

J. M. Martin and Stanley M. Flatté  »View Author Affiliations

Applied Optics, Vol. 27, Issue 11, pp. 2111-2126 (1988)

View Full Text Article

Enhanced HTML    Acrobat PDF (3778 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



An extended random medium is modeled by a set of 2-D thin Gaussian phase-changing screens with phase power spectral densities appropriate to the natural medium being modeled. Details of the algorithm and limitations on its application to experimental conditions are discussed, concentrating on power-law spectra describing refractive-index fluctuations of the neutral atmosphere. Inner and outer scale effects on intensity scintillation spectra and intensity variance are also included. Images of single realizations of the intensity field at the observing plane are presented, showing that under weak scattering the small-scale Fresnel length structure of the medium dominates the intensity scattering pattern. As the strength of scattering increases, caustics and interference fringes around focal regions begin to form. Finally, in still stronger scatter, the clustering of bright regions begins to reflect the large-scale structure of the medium. For plane waves incident on the medium, physically reasonable inner scales do not produce the large values of intensity variance observed in the focusing region during laser propagation experiments over kilometer paths in the atmosphere. Values as large as experimental observations have been produced in the simulations, but they require inner scales of the order of 10 cm. Inclusion of an outer scale depresses the low-frequency end of the intensity spectrum and reduces the maximum of the intensity variance. Increasing the steepness of the power law also slightly increases the maximum value of intensity variance.

© 1988 Optical Society of America

Original Manuscript: August 26, 1987
Published: June 1, 1988

J. M. Martin and Stanley M. Flatté, "Intensity images and statistics from numerical simulation of wave propagation in 3-D random media," Appl. Opt. 27, 2111-2126 (1988)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. V. I. Tatarski, “The Effects of the Turbulent Atmosphere on Wave Propagation,” National Technical Information Service, TT-68-50464 (1971).
  2. J. L. Codona, D. B. Creamer, S. M. Flatte, R. G. Frehlich, F. S. Henyey, “Solution for the Fourth Moment of Waves Propagating in Random Media,” Radio Sci. 21, 929 (1986). [CrossRef]
  3. R. L. Fante, “Electric Field Spectrum and Intensity Covariance of a Wave in a Random Medium,” Radio Sci. 10, 77 (1975). [CrossRef]
  4. C. Macaskill, “An Improved Solution to the Fourth Moment Equation for Intensity Fluctuations,” Proc. R. Soc. London Ser. A 386, 461 (1983). [CrossRef]
  5. M. Whitman, M. J. Beran, “Two-Scale Solution for Atmospheric Scintillation,” J. Opt. Soc. Am. A 2, 2133 (1985). [CrossRef]
  6. S. M. Flatte, F. D. Tappert, “Calculation of the Effect of Internal Waves on Oceanic Sound Transmission,” J. Acoust. Soc. Am. 58, 1151 (1975). [CrossRef]
  7. C. Macaskill, T. E. Ewart, “Computer Simulation of Two-Dimensional Random Wave Propagation,” IMA J. Appl. Math. 33, 1 (1984). [CrossRef]
  8. R. Buckley, “Diffraction by a Random Phase-Changing Screen: A Numerical Experiment,” J. Atmos. Terr. Phys. 37, 1431 (1975). [CrossRef]
  9. C. L. Rino, J. Owen, “Numerical Simulations of Intensity Scintillation Using the Power Law Phase Screen Model,” Radio Sci. 15, 41 (1980). [CrossRef]
  10. J. P. Filice, “Studies of the Microscale Density Fluctuations in the Solar Wind Using Interplanetary Scintillations,” U. California, San Diego, Ph.D. Thesis (1984).
  11. H. G. Booker, J. A. Ferguson, H. O. Vats, “Comparison between the Extended-Medium and the Phase-Screen Scintillation Theories,” J. Atmos. Terr. Phys. 47, 381 (1985). [CrossRef]
  12. V. A. Fock, “Theory of Radio-Wave Propagation in an Inhomogeneous Atmosphere for a Raised Source,” Bull. Acad. Sci. URSS Ser. Phys. 14, 70 (1950).
  13. S. M. Flatte, R. Dashen, W. H. Munk, K. M. Watson, F. Zachariasen, Sound Transmission Through a Fluctuating Ocean (Cambridge U.P., London, 1979).
  14. R. Dashen, “Path Integrals for Waves in Random Media,” J. Math. Phys. 20, 894 (1979). [CrossRef]
  15. B. J. Uscinski, “Analytical Solution of the Fourth-Moment Equation and Interpretation as a Set of Phase Screens,” J. Opt. Soc. Am. A 2, 2077 (1985). [CrossRef]
  16. D. L. Knepp, “Multiple Phase-Screen Calculation of the Tem poral Behavior of Stochastic Waves,” Proc. IEEE 71, 722 (1983). [CrossRef]
  17. R. L. Fante, “Inner-Scale Size Effect on the Scintillations of Light in the Turbulent Atmosphere,” J. Opt. Soc. Am. 73, 277 (1983). [CrossRef]
  18. V. R. Rumsey, “Scintillations due to a Concentrated Layer with a Power-Law Turbulence Spectrum,” Radio Sci. 10, 107 (1975). [CrossRef]
  19. K. S. Goshelashvily, V. I. Shishov, “Saturated Fluctuations in the Laser Radiation Intensity in a Turbulent Medium,” Sov. Phys. JETP 39, 605 (1974).
  20. R. G. Frehlich, “Intensity Covariance of a Point Source in a Random Medium with a Kolmogorov Spectrum and an Inner Scale of Turbulence,” J. Opt. Soc. Am. A 4, 360 (1987). [CrossRef]
  21. R. Esswein, S. M. Flatte, “Calculation of the Phase-Structure Function Density from Oceanic Internal Waves,” J. Acoust. Soc. Am. 70, 1387 (1981). [CrossRef]
  22. R. G. Frehlich, “Laser Propagation in Random Media,” U. California, San Diego, Ph.D. Thesis (1982).
  23. K. S. Goshelashvily, V. I. Shishov, “Saturation of Laser Irradiance Fluctuations beyond a Turbulent Layer,” Opt. Quantum Electron. 7, 524 (1975). [CrossRef]
  24. D. P. Hinson, “Strong Scintillations during Atmospheric Occupations: Theoretical Intensity Spectra,” Radio Sci. 21, 257 (1986). [CrossRef]
  25. R. Woo, J. W. Armstrong, “Spacecraft Radio Scattering Observations of the Power Spectrum of Electron Density Fluctuations in the Solar Wind,” J. Geophys. Res. 84, 7288 (1979). [CrossRef]
  26. R. J. Hill, S. F. Clifford, “Theory of Saturation of Optical Scintillation by Strong Turbulence for Arbitrary Refractive-Index Spectra,” J. Opt. Soc. Am. 71, 675 (1981). [CrossRef]
  27. R. J. Hill, “Spectra of Fluctuations in Refractivity, Temperature, Humidity, and the Temperature-Humidity Cospectrum in the Inertial and Dissipation Ranges,” Radio Sci. 13, 953 (1978). [CrossRef]
  28. R. J. Hill, “Theory of Saturation of Optical Scintillation by Strong Turbulence: Plane-Wave Variance and Covariance and Spherical Wave Covariance,” J. Opt. Soc. Am. 72, 212 (1982). [CrossRef]
  29. W. R. Coles, R. G. Frehlich, “Simultaneous Measurements of Angular Scattering and Intensity Scintillation in the Atmosphere,” J. Opt. Soc. Am. 72, 1042 (1982). [CrossRef]
  30. R. L. Phillips, L. C. Andrews, “Measured Statistics of Laser-Light Scattering in Atmospheric Turbulence,” J. Opt. Soc. Am. 71, 1440 (1981). [CrossRef]
  31. J. W. Goodman, Statistical Optics (Wiley-Interscience, New York, 1985).
  32. C. L. Rino, “A Power Law Phase Screen Model for Ionospheric Scintillation 1. Weak Scatter,” Radio Sci. 14, 1135 (1979). [CrossRef]
  33. B. J. Uscinski, C. Macaskill, M. Spivack, “Path Integrals for Wave Intensity Fluctuations in Random Media,” J. Sound Vib. 106, 509 (1986). [CrossRef]
  34. E. E. Salpeter, “Interplanetary Scintillations. I. Theory,” Astrophys. J. 147, 433 (1967). [CrossRef]
  35. S. Frankenthal, A. M. Whitman, M. J. Beran, “Two-Scale Solutions for Intensity Fluctuations in Strong Scattering,” J. Opt. Soc. Am. A 1, 585 (1984). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited