OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Vol. 27, Iss. 11 — Jun. 1, 1988
  • pp: 2287–2295

Single scattering albedo, asymmetry parameter, apparent refractive index, and apparent soot content of dry atmospheric particles

Gottfried Hänel  »View Author Affiliations


Applied Optics, Vol. 27, Issue 11, pp. 2287-2295 (1988)
http://dx.doi.org/10.1364/AO.27.002287


View Full Text Article

Enhanced HTML    Acrobat PDF (1239 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Mean shortwave values of the single scattering albedo and the asymmetry parameter of dry atmospheric particles have been measured photometrically. From the single scattering albedo the mean shortwave value of the apparent complex refractive index and the apparent volume fraction of soot within the particulate matter are derived. From 275 measurements the mean value of the single scattering albedo is 0.835, the mean value of the apparent complex refractive index is 1.51–0.026i, and the mean value of the apparent volume fraction of soot is 5.8%. For seventy-seven cases of mostly urban particles the mean value of the asymmetry parameter is 0.39. The term apparent stands for appearing (but not necessarily) real or true. Reasons for this attribute are the idealizations necessary to get a value of the refractive index of atmospheric particles. Consequently the use of an apparent refractive index for modeling purposes is restricted as described in the concluding section.

© 1988 Optical Society of America

History
Original Manuscript: February 25, 1987
Published: June 1, 1988

Citation
Gottfried Hänel, "Single scattering albedo, asymmetry parameter, apparent refractive index, and apparent soot content of dry atmospheric particles," Appl. Opt. 27, 2287-2295 (1988)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-27-11-2287


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. J. A. Coakley, R. D. Cess, F. B. Yurevich, “The Effect of Tropospheric Aerosols on the Earth’s Radiation Budget: a Parameterization for Climate Models,” J. Atmos. Sci. 40, 116 (1983). [CrossRef]
  2. P. Chylek, V. Ramaswamy, R. Cheng, R. G. Pinnik, “Optical Properties and Mass Concentration of Carbonaceous Smokes,” Appl. Opt. 20, 2980 (1981). [CrossRef] [PubMed]
  3. D. W. Schuerman, R. T. Wang, B. A. S. Gustafson, R. W. Schaefer, “Systematic Studies of Light Scattering. 1: Particle Shape,” Appl. Opt. 20, 4039 (1981). [CrossRef] [PubMed]
  4. R. Zerull, “Laboratory Investigations and Optical Properties of Grains,” in Properties and Interactions of Interplanetary Dust (Reidel, Dordrecht, 1985), p. 197. [CrossRef]
  5. P. Chylek, V. Srivastava, “Dielectric Constant of a Composite Inhomogeneous Medium,” Phys. Rev. B 27, 5098 (1983). [CrossRef]
  6. G. Hänel, “Radiation Budget of the Boundary Layer. Part II: Simultaneous Measurement of Mean Solar Volume Absorption and Extinction Coefficients of Particles,” Contrib. Atmos. Phys. 60, 241 (1987).
  7. G. Hänel, “The Properties of Atmospheric Aerosol Particles as Functions of the Relative Humidity at Thermodynamic Equilibrium with the Surrounding Moist Air,” Adv. Geophys. 19, 73 (1976). [CrossRef]
  8. G. Hänel, M. Lehmann, “Equilibrium Size of Aerosol Particles and Relative Humidity: New Experimental Data from Various Aerosol Types and Their Treatment for Cloud Physics Application,” Contrib. Atmos. Phys. 54, 57 (1981).
  9. G. W. Grams, A. Colletti, “Analysis of Polar Nephelometer Data Obtained at the First International Workshop on Light Absorption by Aerosol Particles,” in Light Absorption by Aerosol Particles, H. E. Gerber, E. E. Hindman, Eds. (Spectrum Press, Hampton, VA, 1982), p. 251.
  10. D. Weidert, “Complete Sets of Optical Parameters of Atmospheric Particles Collected on Nuclepore Filters,” Diplomarbeit, U. Frankfurt (1987).
  11. J.-P. Blanchet, “Application of the Chandrasekhar Mean to Aerosol Optical Parameters,” Atmos. Ocean 20, 189 (1982). [CrossRef]
  12. G. Hänel, R. Busen, C. Hillenbrand, R. Schloss, “Light Absorption Measurements: New Techniques,” Appl. Opt. 21, 382 (1982); G. Hänel, C. Hillenbrand, “The Calorimetric Measurement of Optical Absorption,” submitted to Applied Optics (1988). [CrossRef] [PubMed]
  13. A. D. Clarke, “Effects of Filter Internal Reflection Coefficient on Light Absorption Measurements made Using the Integrating Plate Method,” Appl. Opt. 21, 3021 (1982); “Integrating Sandwich: a New Method of Measurement of the Light Absorption Coefficient for Atmospheric Particles,” Appl. Opt. 21, 3011 (1982). [CrossRef] [PubMed]
  14. S. Twomey, “Direct Visual Photometric Technique for Estimating Absorption in Collected Aerosol Samples,” Appl. Opt. 19, 1740 (1980). [CrossRef] [PubMed]
  15. A. D. Clarke, K. J. Noone, J. Heintzenberg, S. G. Warren, D. S. Covert, “Aerosol Light Absorption Measurement Techniques: Analysis and Intercomparison,” Atmos. Environ. 21, 1455 (1987).
  16. G. Mie, “Beitrag zur Optik trüber Medien,” Ann. Phys. 25, 377 (1908). [CrossRef]
  17. E. P. Shettle, R. W. Fenn, “Models for the Aerosols of the Lower Atmosphere and the Effects of Humidity Variations on their Optical Properties,” Report AFGL-TR-79-0214, Air Force Cambridge Lab., Hanscom AFB (1979).
  18. R. J. Countess, S. H. Cadle, P. J. Groblicki, G. T. Wolff, “Chemical Analysis of Size-Segregated Samples of Denver’s Ambient Particulate,” J. Air Pollut. Control Assoc. 31, 247 (1981). [CrossRef]
  19. J. D. Lindberg, J. B. Gillespie, “Relationship between Particle Size and Imaginary Refractive Index in Atmospheric Dust,” Appl. Opt. 16, 2628 (1977). [CrossRef] [PubMed]
  20. K. Andre, R. Dlugi, G. Schnatz, “Absorption of Visible Radiation by Atmospheric Aerosol Particles, Fog and Cloud Water Residues,” J. Atmos. Sci. 38, 141 (1981). [CrossRef]
  21. M. Nakagaki, W. Heller, “Effect of Light Scattering upon the Refractive Index of Dispersed Colloidal Spheres,” J. Appl. Phys. 27, 975 (1956). [CrossRef]
  22. W. G. Egan, T. W. Hilgeman, Optical Properties of Inhomogeneous Materials (Academic, New York, 1979).
  23. G. Hänel, “The Real Part of the Mean Complex Refractive Index and the Mean Density of Samples of Atmospheric Aerosol Particles,” Tellus 20, 371 (1968). [CrossRef]
  24. These are usually volume absorption, scattering and extinction coefficients, or the phase function; see R. Eiden, “The Elliptical Polarization of Light Scattered by a Volume of Atmospheric Air,” Appl. Opt. 5, 569 (1966). [CrossRef] [PubMed]
  25. The size of a particle of unknown properties can be measured only within ±20% at best. Thus using even a simultaneous measurement of the size distribution a considerable error might be the result.
  26. Other models47,52 have the same principal deficiency.
  27. A. D. Clarke, A. P. Waggoner, “Results from University of Washington Participation in First International Workshop on Light Absorption by Aerosol Particles,” in Light Absorption by Aerosol Particles, H. E. Gerber, E. E. Hindman, Eds. (Spectrum Press, Hampton, VA, 1982).
  28. J. B. Gillespie, “Complex Refractive Index of Powdered Materials in the 9 μm to 11 μm Spectral Region Determined by an Attenuated Total Reflectance Technique and Refractive Index Mixture Rules,” Report ASL-TR-0140, U.S. Army Atmospheric Sciences Laboratory, White Sands Missile Range (1983).
  29. C. F. Bohren, L. J. Battan, “Radar Backscattering by Inhomogeneous Precipitation Particles,” J. Atmos. Sci. 37, 1821 (1980). [CrossRef]
  30. R. W. Bergstrom, “Comments on the Estimation of Aerosol Absorption Coefficients in the Atmosphere,” Contrib. Atmos. Phys. 46, 198 (1973).
  31. C. F. Bohren, “Applicability of Effective-Medium Theories to Problems of Scattering and Absorption by Nonhomogeneous Atmospheric Particles,” J. Atmos. Sci. 43, 468 (1986). [CrossRef]
  32. H. C. van de Hulst, Light Scattering by Small Particles (Wiley, New York, 1957).
  33. G. Hänel, R. Dlugi, “Approximation for the Absorption Coefficient of Airborne Atmospheric Aerosol Particles in Terms of Measurable Bulk Properties,” Tellus 29, 75 (1977). [CrossRef]
  34. Three measured distributions have been taken.37,53 As a second urban distribution a power law (concentration, ~r−3) was used, and as a third nonurban distribution one was used with a constant concentration at r < 0.1 μm and with a power law as above for a larger r.
  35. R. B. Penndorf, “Scattering and Extinction Coefficients for Small Spherical Aerosols,” J. Atmos. Sci. 19, 193 (1962). [CrossRef]
  36. D. Deirmendjian, Electromagnetic Scattering on Spherical Polydispersions (Elsevier, New York, 1969).
  37. K. Willeke, K. T. Whitby, “Atmospheric Aerosols: Size Distribution Interpretation,” J. Air Pollut. Control Assoc. 25, 529 (1975). [CrossRef]
  38. H. E. Gerber, “Absorption of Light by Atmospheric Aerosol Particles: Review of Instrumentation and Measurements,” in Light Absorption by Aerosol Particles, H. E. Gerber, E. E. Hindman, Eds. (Spectrum Press, Hampton, VA, 1982).
  39. K. Fischer, “Bestimmung der Absorption von sichtbarer Strahlung durch Aerosolpartikeln,” Contrib. Atmos. Phys. 43, 244 (1970); “Mass Absorption Coefficient of Natural Aerosol Particles in the 0.4–2.4μm Wavelength Interval,” Contrib. Atmos. Phys. 46, 89 (1973), “Mass Absorption Indices of Various Types of Natural Aerosol Particles in the Infrared,” Appl. Opt. 14, 2851 (1975). [PubMed]
  40. Z. Levin, J. H. Joseph, Y. Mekler, “Properties of Sharav (Khamsin) Dust—Comparison of Optical and Direct Sampling Data,” J. Atmos. Sci. 37, 881 (1980). [CrossRef]
  41. J. D. Lindberg, L. S. Laude, “Measurement of the Absorption Coefficient of Atmospheric Dust,” Appl. Opt. 13, 1923 (1974). [CrossRef] [PubMed]
  42. E. M. Patterson, B. T. Marshall, “Diffuse Reflectance and Transmission Measurements of Aerosol Absorption,” in Light Absorption by Aerosol Particles, by H. E. Gerber, E. E. Hindman, Eds. (Spectrum Press, Hampton, VA, 1982).
  43. P. Kubelka, “New Contribution to the Optics of Intensely Light-Scattering Materials,” J. Opt. Soc. Am. 38, 448 (1948). [CrossRef] [PubMed]
  44. J. J. Shah, R. L. Johnson, E. K. Heyerdahl, J. J. Huntzicker, “Carbonaceous Aerosol at Urban and Rural Sites in the United States,” J. Air Pollut. Control Assoc. 36, 254 (1986). [CrossRef]
  45. G. Hänel, J. Thudium, “Mean Bulk Densities of Samples of Dry Atmospheric Aerosol Particles: A Summary of Measured Data,” Pure Appl. Geophys. 115, 799 (1977). [CrossRef]
  46. C. S. Sloane, “Optical Properties of Aerosols of Mixed Composition,” Atmos. Environ. 18, 871 (1984). [CrossRef]
  47. M. Kerker, The Scattering of Light and Other Electromagnetic Radiation (Academic, New York, 1969).
  48. R. J. Countess, G. T. Wolff, S. H. Cadle, “The Denver Winter Aerosol: A Comprehensive Chemical Characterization,” J. Air Pollut. Control. Assoc. 30, 1194 (1980). [CrossRef]
  49. J. J. Shah, T. J. Kneip, J. M. Daisey, “Source Apportionment of Carbonaceous Aerosol in New York City by Multiple Linear Regression,” J. Air Pollut. Control Assoc. 35, 541 (1985). [CrossRef] [PubMed]
  50. G. T. Wolff, J.-S. Siak, T. L. Chan, P. E. Kersog, “Multivariate Statistical Analyses of Air Quality Data and Bacterial Mutagenicity Data from Ambient Aerosols,” Atmos. Environ. 20, 2231 (1986). [CrossRef]
  51. M. A. Ferman, G. T. Wolff, N. A. Kelly, “The Nature and Sources of Haze in the Shenandoah Valley/Blue Ridge Mountains Area,” J. Air Pollut. Control Assoc. 31, 1074 (1981). [CrossRef]
  52. S. Asano, G. Yamamoto, “Light Scattering by a Spheroidal Particle,” Appl. Opt. 14, 29 (1975). [PubMed]
  53. C. Junge, “Our Knowledge of the Physico-chemistry of Aerosols in the Undisturbed Marine Environment,” J. Geophys. Res. 77, 5183 (1972); “Studies of the Chemistry of Unpolluted Atmospheres,” Report PAU-5644, Stanford Research Institute (1966). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 
Fig. 4
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited