OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Vol. 27, Iss. 12 — Jun. 15, 1988
  • pp: 2532–2538

Remote sensing of atmospheric winds using speckle–turbulence interaction, a CO2 laser, and optical heterodyne detection

J. Fred Holmes, Farzin Amzajerdian, Rao V. S. Gudimetla, and John M. Hunt  »View Author Affiliations


Applied Optics, Vol. 27, Issue 12, pp. 2532-2538 (1988)
http://dx.doi.org/10.1364/AO.27.002532


View Full Text Article

Enhanced HTML    Acrobat PDF (834 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Speckle–turbulence interaction can be utilized to measure the vector wind in a plane perpendicular to the line of sight from a laser transmitter to a target. A continuous wave source of around 1 W and operating at 10.6 μm, in conjunction with an optical heterodyne receiver, has been used to measure atmospheric winds along horizontal paths. A theoretical basis, the experimental apparatus, processing techniques, and experimental results are presented. The technique has been demonstrated for remote sensing of atmospheric winds along horizontal paths but also has potential for global remote sensing of atmospheric winds and for onboard wind shear detection systems for aircraft. The results show that rms accuracies of the order of 0.5 m/s are possible with averaging times as short as 2 s.

© 1988 Optical Society of America

History
Original Manuscript: August 21, 1987
Published: June 15, 1988

Citation
J. Fred Holmes, Farzin Amzajerdian, Rao V. S. Gudimetla, and John M. Hunt, "Remote sensing of atmospheric winds using speckle–turbulence interaction, a CO2 laser, and optical heterodyne detection," Appl. Opt. 27, 2532-2538 (1988)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-27-12-2532

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Log in to access OSA Member Subscription

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Log in to access OSA Member Subscription

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Log in to access OSA Member Subscription

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Log in to access OSA Member Subscription

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited