OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Vol. 27, Iss. 14 — Jul. 15, 1988
  • pp: 2851–2857

Erasure of holographic gratings in photorefractive materials with two active species

M. Carrascosa and F. Agullo-Lopez  »View Author Affiliations


Applied Optics, Vol. 27, Issue 14, pp. 2851-2857 (1988)
http://dx.doi.org/10.1364/AO.27.002851


View Full Text Article

Enhanced HTML    Acrobat PDF (772 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

The erasure kinetics of holographic gratings has been theoretically studied for a material containing two photorefractive species. The approach is an extension of the method developed by Carrascosa and Agullo-Lopez for a simple photorefractive center. The erasure of the grating involves the transfer of electronic charge between the two photorefractive systems together with a spatial transport of the charge. Both processes may have, in general, comparable time constants leading to a more complicated formalism than that for a single species. The electronic exchange between two photoactive centers has been first solved analytically. Then, the erasure kinetics of a sinusoidal grating, including charge exchange, has been formulated under the short transport length approximation. The coupled equations governing the decay of grating amplitude and the velocity of fringes have been numerically solved (a) after neglecting diffusion and (b) in the general case. The solution for the time dependence of grating amplitude is nonexponential. The particular situation where the electronic exchange process is very fast in comparison to grating erasure has been solved assuming arbitrary transport lengths. The decay of grating amplitude consists of two exponential curves if the photovoltaic drift is ignored and it is nonexponential if it is included. For short transport lengths, the decay reduces to a single exponential.

© 1988 Optical Society of America

History
Original Manuscript: July 21, 1987
Published: July 15, 1988

Citation
M. Carrascosa and F. Agullo-Lopez, "Erasure of holographic gratings in photorefractive materials with two active species," Appl. Opt. 27, 2851-2857 (1988)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-27-14-2851

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

If you are accessing the full text through a member bundle, please use the Enhanced HTML link to gain access to the citation lists and other restricted features. Note that accessing both the PDF and HTML versions of an article will count as only one download against your account.

Contact your librarian or system administrator
or
Log in to access OSA Member Subscription

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

If you are accessing the full text through a member bundle, please use the Enhanced HTML link to gain access to the citation lists and other restricted features. Note that accessing both the PDF and HTML versions of an article will count as only one download against your account.

Contact your librarian or system administrator
or
Log in to access OSA Member Subscription

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

If you wish to use one of your free member downloads to view the figures, click "Enhanced HTML" above and access the figures from the article itself or from the navigation tab.

Contact your librarian or system administrator
or
Log in to access OSA Member Subscription

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

If you are accessing the full text through a member bundle, please use the Enhanced HTML link to gain access to the citation lists and other restricted features. Note that accessing both the PDF and HTML versions of an article will count as only one download against your account.

Contact your librarian or system administrator
or
Log in to access OSA Member Subscription

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited