OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Vol. 27, Iss. 16 — Aug. 15, 1988
  • pp: 3397–3407

Frequency-modulated impulse response photothermal detection through optical reflectance. 1: Theory

Andreas Mandelis and Joan F. Power  »View Author Affiliations


Applied Optics, Vol. 27, Issue 16, pp. 3397-3407 (1988)
http://dx.doi.org/10.1364/AO.27.003397


View Full Text Article

Enhanced HTML    Acrobat PDF (1369 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

The 3-D theory of impulse response photothermal detection in opaque (i.e., photothermally saturated) solids through the dependence of the surface temperature optical reflectance on the mathematical equivalent of an optical impulse (the Green’s function) is presented. The theory is extended to include the effects of the finite spatial extent of the photothermal laser source. Explicit expressions for the time-dependent temperature field have been obtained in the experimentally important cases of semi-infinite solids and solids of finite thickness in contact with thermally insulating or conducting backings.

© 1988 Optical Society of America

History
Original Manuscript: December 1, 1987
Published: August 15, 1988

Citation
Andreas Mandelis and Joan F. Power, "Frequency-modulated impulse response photothermal detection through optical reflectance. 1: Theory," Appl. Opt. 27, 3397-3407 (1988)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-27-16-3397


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. J. Opsal, A. Rosencwaig, D. L. Willenborg, “Thermal-Wave Detection and Thin-Film Thickness Measurements with Laser Beam Deflection,” Appl. Opt. 22, 3169 (1983). [CrossRef] [PubMed]
  2. A. Mandelis, A. Williams, E. K. M. Siu, “Photothermal Wave Imaging of Metal-Oxide-Semiconductor Field Effect Transistor Structures,” J. Appl. Phys. 63, 92 (1988). [CrossRef]
  3. A. Rosencwaig, J. Opsal, W. L. Smith, D. L. Willenborg, “Detection of Thermal Waves Through Optical Reflectance,” Appl. Phys. Lett. 46, 1013 (1985). [CrossRef]
  4. G. L. Eesley, “Generation of Nonequilibrium Electron and Lattice Temperatures in Copper by Picosecond Laser Pulses,” Phys. Rev. B 33, 2144 (1986). [CrossRef]
  5. C. A. Paddock, G. L. Eesley, “Transient Thermoreflectance from Thin Metal Films,” J. Appl. Phys. 60, 285 (1986). [CrossRef]
  6. B. M. Clemens, G. L. Eesley, C. A. Paddock, “Time-Resolved Thermal Transport in Compositionally Modulated Metal Films,” Phys. Rev. B 37, 1085 (1988). [CrossRef]
  7. W. P. Leung, A. C. Tam, “Thermal Diffusivity in Thin Films Measured by Noncontact Single-Ended Pulsed-Laser-Induced Thermal Radiometry,” Opt. Lett. 9, 93 (1984). [CrossRef] [PubMed]
  8. T. Sawada, M. Kasai, “Non-Destructive Inspection of Stacking Faults and Dislocations of Semiconductor Wafters by Photoacoustic Microscopy (PAM) and Photothermal Beam Deflection (PBD),” in Photoacoustic and Thermal Wave Phenomena in Semiconductors, A. Mandelis, Ed. (North-Holland, New York, 1987), Chap. 1.
  9. S. O. Kanstad, P.-E. Nordal, “Experimental Aspects of Photothermal Radiometry,” Can. J. Phys. 64, 1155 (1986). [CrossRef]
  10. A. Mandelis, “Time-Delay-Domain and Pseudorandom-Noise Photoacoustic and Photothermal Wave Processes: A Review of the State of the Art,” IEEE Trans. Ultrasonics, Ferroelectrics and Frequency Control UFFC-33, 590 (1986). [CrossRef]
  11. J. F. Power, A. Mandelis, “Photopyroelectric Thin Film Instrumentation and Impulse Response Detection” (Parts I–III), Rev. Sci. Instrum. 58, 2018, 2024, 2033 (1987). [CrossRef]
  12. M. Cardona, Modulation Spectroscopy (Academic, New York, 1969), pp. 117–136.
  13. H. C. Chow, “Theory of Three-Dimensional Photoacoustic Effect with Solids,” J. Appl. Phys. 51, 4053 (1980). [CrossRef]
  14. A. Mandelis, B. S. H. Royce, “Time-Domain Photoacoustic Spectroscopy of Solids,” J. Appl. Phys. 50, 4330 (1979). [CrossRef]
  15. J. A. Stratton, Electromagnetic Theory (McGraw-Hill, New York, 1941), p. 573; A. Sommerfeld, Ann. Phys. 28, 665 (1909). [CrossRef]
  16. A. Rosencwaig, J. Opsal, “Thermal Wave Imaging with Thermoacoustic Detection,” IEEE Trans. Ultrasonics, Ferroelectrics and Frequency Control UFFC-33, 516 (1986). [CrossRef]
  17. R. Bellman, R. E. Marshak, G. M. Wing, “Laplace Transform Solution of Two-Medium Neutron Aging Problem,” Philos. Mag. 40, 297 (1949).
  18. H. S. Carslaw, J. C. Jaeger, Conduction of Heat in Solids (Oxford U.P., London, 1959), Chap. 14.
  19. Ref. 18, Chap. 10.10.V.
  20. Ref. 18, Chap. 10.3.
  21. G. N. Watson, A Treatise on the Theory of Bessel Functions (Cambridge U.P., London, 1944), p. 393.
  22. P. M. Morse, H. Feshboch, Methods of Theoretical Physics (McGraw-Hill, New York, 1953), p. 812.
  23. W. P. Leung, A. C. Tam, “Techniques of Flash Radiometry,” J. Appl. Phys. 56, 153 (1984). [CrossRef]
  24. A. C. Tam, “Pulsed Laser Photoacoustic and Photothermal Detection,” in Photoacoustic and Thermal Wave Phenomena in Semiconductors, A. Mandelis, Ed. (North-Holland, New York, 1987), Chap. 8.
  25. M. Abramowitz, I. A. Stegun, Eds., Handbook of Mathematical Functions (National Bureau of Standards, Washington, DC, 1964), p. 229.

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited