OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Vol. 27, Iss. 16 — Aug. 15, 1988
  • pp: 3464–3467

Numerical evaluation of a class of integrals for image assessment

L. N. Hazra  »View Author Affiliations


Applied Optics, Vol. 27, Issue 16, pp. 3464-3467 (1988)
http://dx.doi.org/10.1364/AO.27.003464


View Full Text Article

Enhanced HTML    Acrobat PDF (434 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

The calculation of image assessment critiera, e.g., the Strehl ratio, the point spread function, or the optical transfer function, involves the evaluation of an integral where the integrand is highly oscillatory over a large range of integration. Prefaced with a brief description of the well-known numerical quadrature methods adopted for the purpose, this paper presents a new quadrature technique that obviates the need for knowledge of derivatives of the argument of the exponential integrand. Some illustrative numerical results are presented.

© 1988 Optical Society of America

History
Original Manuscript: September 2, 1987
Published: August 15, 1988

Citation
L. N. Hazra, "Numerical evaluation of a class of integrals for image assessment," Appl. Opt. 27, 3464-3467 (1988)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-27-16-3464


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. R. Barakat, “The Calculation of Integrals Encountered in Optical Diffraction Theory,” in The Computer in Optical Research, B. R. Frieden, Ed. (Springer-Verlag, New York, 1980), p. 35. [CrossRef]
  2. P. J. Davis, P. Rabinowitz, Methods of Numerical Integration (Academic, New York, 1975).
  3. G. Black, E. H. Linfoot, “Spherical Aberration and the Information Content of Optical Images,” Proc. R. Soc. London Ser. A, 239, 522 (1957). [CrossRef]
  4. M. Kidger, “The Calculation of the Optical Transfer Function Using Gaussian Quadrature,” Opt. Acta 25, 665 (1978). [CrossRef]
  5. M. Plight, “The Rapid Calculation of the Optical Transfer Function for On Axis Systems Using the Orthogonal Properties of Tchebycheff Polynomials,” Opt. Acta 25, 849 (1978). [CrossRef]
  6. M. Born, E. Wolf, Principles of Optics (Pergamon, Oxford, 1970), p. 464.
  7. E. C. Kintner, R. M. Sllitto, “A New Analytic Method for Computing the Optical Transfer Function,” Opt. Acta 23, 607 (1976). [CrossRef]
  8. M. De, L. N. Hazra, “Walsh Functions in Problems of Optical Imagery,” Opt. Acta 24, 221 (1977). [CrossRef]
  9. R. Barakat, “Application of the Sampling Theorem to Optical Diffraction Theory,” J. Opt. Soc. Am. 54, 920 (1964). [CrossRef]
  10. B. R. Frieden, “Image Evaluation by Use of the Sampling Theorem,” J. Opt. Soc. Am. 56, 1355 (1966). [CrossRef]
  11. E. O. Brigham, The Fast Fourier Transform (Prentice-Hall, Englewood Cliffs, NJ, 1974).
  12. A. E. Siegman, “Quasi Fast Hankel Transform,” Opt. Lett. 1, 13 (1977). [CrossRef] [PubMed]
  13. S. Szapiel, “Point-Spread-Function Computation: Quasi-Digital Method,” J. Opt. Soc. Am. A 2, 3 (1985). [CrossRef]
  14. S. Szapiel, “Point-Spread Function Computation: Analytic End Correction in the Quasi-Digital Method,” J. Opt. Soc. Am. A 4, 625 (1987). [CrossRef]
  15. H. H. Hopkins, “The Numerical Evaluation of the Frequency Response of Optical Systems,” Proc. Phys. Soc. London Sect. B 70, 1002 (1957). [CrossRef]
  16. H. H. Hopkins, M. J. Yzuel, “The Computation of Diffraction Patterns in the Presence of Aberrations,” Opt. Acta 17, 157 (1970). [CrossRef]
  17. J. Macdonald, “The Calculation of the Optical Transfer Function,” Opt. Acta 8, 269 (1971). [CrossRef]
  18. A. Maréchal, “Étude des effects combines de la diffraction et des aberrations géométriques sur l’image d’un point lumineux,” Rev. Opt. 26, 257 (1947).
  19. L. N. Hazra, “A New Class of Optimum Amplitude Filters,” Opt. Commun. 21, 232 (1977). [CrossRef]
  20. P. K. Purkait, L. N. Hazra, M. De, “Walsh Functions in Lens Optimization II. Evaluation of Diffraction Based OTF for On Axis Imagery,” Opt. Acta 28, 389 (1981). [CrossRef]
  21. L. N. Hazra, “Extended Range Diffraction Based Merit Function for Lens Design Optimization,” Proc. Soc. Photo-Opt. Instrum. Eng. 655, 20 (1986).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited