OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Vol. 27, Iss. 17 — Sep. 1, 1988
  • pp: 3738–3743

Antireflection gold surface-relief gratings: experimental characteristics

Nile F. Hartman and Thomas K. Gaylord  »View Author Affiliations


Applied Optics, Vol. 27, Issue 17, pp. 3738-3743 (1988)
http://dx.doi.org/10.1364/AO.27.003738


View Full Text Article

Enhanced HTML    Acrobat PDF (854 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

A systematic procedure using the effective index method and impedance matching has recently been developed Appl. Opt. 26, 3123 ( 1987)] for the design of antireflection high-spatial-frequency rectangular-groove gratings on lossy materials including high conductivity metals. The design procedure in turn can be used as a starting point to design antireflection metallic gratings with lower spatial frequencies using rigorous coupled-wave analysis. These lower spatial-frequency gratings have the advantage of being easier to fabricate. In the present work, a particular antireflection gold grating design (having a period of 1.0 μm, a filling factor of 50%, and a groove depth of 147.5 nm for use at a freespace wavelength of 500 nm, normal incidence, and polarization parallel to the grooves) was fabricated and its diffraction characteristics experimentally measured. The grating indeed showed very nearly zero specular reflection in the blue region of the spectrum. Unlike previously reported antireflection anomalies, the effect is broadband occurring over a broad range of wavelengths and angles of incidence, and for both orthogonal polarizations. This work clearly shows that the systematic design of zero specular reflection grating surfaces is possible.

© 1988 Optical Society of America

History
Original Manuscript: February 10, 1988
Published: September 1, 1988

Citation
Nile F. Hartman and Thomas K. Gaylord, "Antireflection gold surface-relief gratings: experimental characteristics," Appl. Opt. 27, 3738-3743 (1988)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-27-17-3738


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. P. Sheng, A. N. Bloch, R. S. Stepleman, “Wavelength-Selective Absorption Enhancement in Thin-Film Solar Cells,” Appl. Phys. Lett. 43, 579 (1983). [CrossRef]
  2. R. W. Wood, “On a Remarkable Case of Uneven Distribution of Light in a Diffraction Grating Spectrum,” Philos. Mag. 4, 396 (1902). [CrossRef]
  3. R. W. Wood, “Anomalous Diffraction Gratings,” Phys. Rev. 48, 928 (1935). [CrossRef]
  4. M. Neviere, D. Maystre, P. Vincent, “Application du Calcul des Modes de Propagation a L’Etude Théorique des Anomalies des Reseaux Recouverts de Dielectrique,” J. Opt. Paris 8, 231 (1977). [CrossRef]
  5. E. G. Loewen, M. Neviere, “Dielectric Coated Gratings: A Curious Property,” Appl. Opt. 16, 3009 (1977). [CrossRef] [PubMed]
  6. L. Mashev, E. Popov, “Diffraction Efficiency Anomalies of Multicoated Dielectric Gratings,” Opt. Commun. 51, 131 (1984). [CrossRef]
  7. M. C. Hutley, “An Experimental Study of the Anomalies of Sinusoidal Diffraction Gratings,” Opt. Acta 20, 607 (1973). [CrossRef]
  8. M. C. Hutley, V. M. Bird, “A Detailed Experimental Study of the Anomalies of a Sinusoidal Diffraction Grating,” Opt. Acta 20, 771 (1973). [CrossRef]
  9. R. C. McPhedran, D. Maystre, “A Detailed Theoretical Study of the Anomalies of a Sinusoidal Diffraction Grating,” Opt. Acta 21, 413 (1974). [CrossRef]
  10. D. Maystre, F. Petit, “Brewster Incidence for Metallic Gratings,” Opt. Commun. 17, 196 (1976). [CrossRef]
  11. D. Maystre, M. Neviere, “Sur Une Methode D’Etude Theorique Quantitative des Anomalies de Wood des Reseaux de Diffraction: Application aux Anomalies de Plasmons,” J. Opt. Paris 8, 165 (1977). [CrossRef]
  12. M. C. Hutley, D. Maystre, “The Total Absorption of Light by a Diffraction Grating,” Opt. Commun. 19, 431 (1976). [CrossRef]
  13. E. G. Loewen, M. Neviere, D. Maystre, “Efficiency Optimization of Rectangular Groove Gratings for Use in the Visible and IR Regions,” Appl. Opt. 18, 2262 (1979). [CrossRef] [PubMed]
  14. K. Knop, “Reflection Grating Polarizer for the Infrared,” Opt. Commun. 26, 281 (1978). [CrossRef]
  15. J. Hagglund, F. Sellberg, “Reflection, Absorption, and Emission of Light by Opaque Optical Gratings,” J. Opt. Soc. Am. 56, 1031 (1966). [CrossRef]
  16. G. W. Ford, W. H. Weber, “Electromagnetic Interactions of Molecules with Metal Surfaces,” Phys. Rep. 113, 195 (1984). [CrossRef]
  17. M. C. Hutley, J. F. Verrill, R. C. McPhedran, “The Effect of a Dielectric Layer on the Diffraction Anomalies of an Optical Grating,” Opt. Commun. 11, 207 (1974). [CrossRef]
  18. H. Raether, “Dispersion Relation of Surface Plasmons on Gold and Silver Gratings,” Opt. Commun. 42, 217 (1982). [CrossRef]
  19. V. Shah, T. Tamir, “Brewster Phenomena in Lossy Structures,” Opt. Commun. 23, 113 (1977). [CrossRef]
  20. V. Shah, T. Tamir, “Anomalous Absorption by Multi-Layered Media,” Opt. Commun. 37, 383 (1981). [CrossRef]
  21. M. G. Moharam, T. K. Gaylord, “Diffraction Analysis of Dielectric Surface-Relief Gratings,” J. Opt. Soc. Am. 72, 1385 (1982). [CrossRef]
  22. T. K. Gaylord, W. E. Baird, M. G. Moharam, “Zero-Reflectivity High Spatial-Frequency Rectangular-Groove Dielectric Surface-Relief Gratings,” Appl. Opt. 25, 4562 (1986). [CrossRef] [PubMed]
  23. R. C. Enger, S. K. Case, “High Frequency Holographic Transmission Gratings in Photoresist,” J. Opt. Soc. Am. 73, 1113 (1983). [CrossRef]
  24. R. C. Enger, S. K. Case, “Optical Elements with Ultrahigh Spatial-Frequency Surface Corrugations,” Appl. Opt. 22, 3220 (1983). [CrossRef] [PubMed]
  25. T. K. Gaylord, E. N. Glytsis, M. G. Moharam, “Zero-Reflectivity Homogeneous Layers and High Spatial-Frequency Surface-Relief Gratings on Lossy Materials,” Appl. Opt. 26, 3123 (1987). [CrossRef] [PubMed]
  26. M. G. Moharam, T. K. Gaylord, “Rigorous Coupled-Wave Analysis of Metallic Surface-Relief Gratings,” J. Opt. Soc. Am. A 3, 1780 (1986). [CrossRef]
  27. O. Wiener, “Die Theorie des Mischkorpers für das Feld der Stationaren Strömung,” Abh. Math. Phys. Kl. Sachs. Akad. Wiss. Leipzig 32, 509 (1912).
  28. G. Hass, L. Hadley, “Optical Properties of Metals,” in American Institute of Physics Handbook, D. E. Gray, Ed. (McGraw-Hill, New York, 1972), p. 6–119.
  29. Newport Corp, 18235 Mt. Baldy Circle, Fountain Valley, CA 92728-8020.

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 
Fig. 4 Fig. 5
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited