OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Vol. 27, Iss. 18 — Sep. 15, 1988
  • pp: 3902–3907

Accurate calculated tabulations of IR and Raman CO2 line broadening by CO2, H2O, N2, O2 in the 300–2400-K temperature range

L. Rosenmann, J. M. Hartmann, M. Y. Perrin, and J. Taine  »View Author Affiliations


Applied Optics, Vol. 27, Issue 18, pp. 3902-3907 (1988)
http://dx.doi.org/10.1364/AO.27.003902


View Full Text Article

Enhanced HTML    Acrobat PDF (716 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Pressure-broadening coefficients for 12C16O2 lines have been calculated with a recent model derived from the Robert and Bonamy approach which leads to more accurate results than the previouslyused Anderson-Tsao-Curnutte model. Systematic calculations of CO2–CO2, CO2–H2O, CO2–N2, and CO2–O2 broadening coefficients in the 300–2400-K temperature range are presented. The results are suitable for both IR and Raman lines and should be useful for spectra calculations. Tabulations of the broadening coefficients are given together with simple analytical expressions for their rotational quantum number and temperature dependences.

© 1988 Optical Society of America

History
Original Manuscript: December 31, 1987
Published: September 15, 1988

Citation
L. Rosenmann, J. M. Hartmann, M. Y. Perrin, and J. Taine, "Accurate calculated tabulations of IR and Raman CO2 line broadening by CO2, H2O, N2, O2 in the 300–2400-K temperature range," Appl. Opt. 27, 3902-3907 (1988)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-27-18-3902


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. L. S. Bernstein, “Band Model Parameters for the Parallel Bands of Linear Triatomic Molecules. I: Theory,” J. Quant. Spectrosc. Radiat. Transfer 23, 157 (1980). [CrossRef]
  2. J. Taine, “A Line-by-Line Calculation of Low-Resolution Radiative Properties of CO2-CO-Transparent Nonisothermal Gases Mixtures up to 3000 K,” J. Quant. Spectrosc. Radiat. Transfer 30, 371 (1983). [CrossRef]
  3. J. M. Hartmann, R. Levi di Leon, J. Taine, “Line by Line and Narrow Band Statistical Model Calculations for H2O,” J. Quant. Spectrosc. Radiat. Transfer 32, 119 (1984). [CrossRef]
  4. R. Levi di Leon, J. Taine, “Infrared Absorption by Gas Mixtures in the 300–850 K Temperature Range I—4.3 μm and 2.7 μm CO2 Spectra,” J. Quant. Spectrosc. Radiat. Transfer 35, 337 (1986). [CrossRef]
  5. N. Papineau, “Signature infrarouge de flammes; données spectrales du gaz carbonique a température élevée,” Rech. Aerosp. 3, 31 (1987).
  6. W. Malkmus, “Infrared Emissivity of Carbon Dioxyde (4.3-μ Band),” J. Opt. Soc. Am. 53, 951 (1963). [CrossRef]
  7. R. M. Goody, Atmospheric Radiation (Clarendon, Oxford, 1964), pp. 122–170.
  8. Y. Ben Aryeh, “Spectral Emissivity Calculations by the Statistical Model Applied to the 4.3-μ Bands of CO2 at High Temperature,” Appl. Opt. 6, 1049 (1967). [CrossRef] [PubMed]
  9. S. J. Young, “Nonisothermal Band Model Theory,” J. Quant. Spectrosc. Radiat. Transfer 18, 1 (1977); “Evaluation of Noniso-thermal Band Models for H2O,” J. Quant. Spectrosc. Radiat. Transfer 18, 29 (1977). [CrossRef]
  10. L. S. Bernstein, D. C. Robertson, J. A. Conant, “Band-Model Parameters for the 4.3 μm CO2 Band from 200 to 3000°K—II: Prediction, Comparison to Experiment, and Application to Plume Emission-Absorption Calculations,” J. Quant. Spectrosc. Radiat. Transfer 23, 169 (1980). [CrossRef]
  11. A. Soufiani, J. M. Hartmann, J. Taine, “Validity of Band-Model Calculations for CO2 and H2O Applied to Radiative Properties and Conductive-Radiative Transfer,” J. Quant. Spectrosc. Radiat. Transfer 33, 243 (1985). [CrossRef]
  12. A. Soufiani, J. Taine, “Application of Statistical Narrow-band Model to Coupled Radiation and Convection at High Temperature,” Int. J. Heat Mass Transfer 30, 437 (1987). [CrossRef]
  13. N. Papineau, M. Pealat, “Numerical Simulation of the Coherent Anti-Stokes Raman Scattering Spectrum of CO2,” J. Chem. Phys. 79, 5758 (1983); “CARS Spectrum of High Temperature CO2: Analysis and Simulation,” Appl. Opt. 24, 3002 (1985). [CrossRef] [PubMed]
  14. R. J. Hall, “Coherent Anti-Stokes Raman Spectroscopic Modeling for Combustion Diagnostics,” Opt. Eng. 22, 322 (1983). [CrossRef]
  15. R. J. Hall, J. H. Stufflebeam, “Quantitative CARS Spectroscopy of CO2 and N2O,” Appl. Opt. 33, 4319 (1984). [CrossRef]
  16. C. Cousin, R. Le Doucen, J. P. Houdeau, C. Boulet, A. Henry, “Air Broadened Linewidths, Intensities, and Spectral Line Shapes for CO2 at 4.3 μm in the Region of the AMTS Instrument,” Appl. Opt. 25, 2434 (1986). [CrossRef] [PubMed]
  17. C. Cousin, R. Le Doucen, C. Boulet, A. Henry, D. Robert, “Temperature and Frequency Dependences of Absorption in the Microwindows of the 4.3 μm CO2 Band: a Consequence of Line Coupling,” J. Quant. Spectrosc. Radiat. Transfer 36, 521 (1986). [CrossRef]
  18. M. O. Bulanin, A. B. Dokuchaev, M. V. Tonkov, N. N. Filippov, “Influence of Line Interference on the Vibration-Rotation Band Shapes,” J. Quant. Spectrosc. Radiat. Transfer 31, 521 (1984). [CrossRef]
  19. D. E. Burch, D. A. Gryvnak, R. R. Patty, C. E. Bartky, “Absorption of Infrared Radiant Energy by CO2 and H2O. IV: Shapes of Collision-Broadened CO2 Lines,” J. Opt. Soc. Am. 59, 267 (1969). [CrossRef]
  20. J. M. Hartmann, L. Rosenmann, J. Taine, “Temperature and Pressure Dependences of the Absorption in the Narrow R66-R68 Window of the 12C16O2ν3 -Band,” J. Quant. Spectrosc. Radiat. Transfer, still unknown (1988) in press.
  21. L. Rosenmann, J. M. Hartmann, M. Y. Perrin, J. Taine, “Collisional Broadening of CO2 IR lines. II: Calculations,” J. Chem. Phys. 88, 2999 (1988). [CrossRef]
  22. C. Boulet, E. Arié, J. P. Bouanich, N. Lacome, “Spectroscopie par source laser. II. Etude expérimentale de l’élargissement des raies de la transition 0001-(1000,0200)I de CO2 perturbé par N2. Application de la théorie d’Anderson, Tsao et Curnutte au calcul des largeurs des raies de CO2 pur, et perturbé par N2,” Can. J. Phys. 50, 2178 (1972). [CrossRef]
  23. E. Arié, N. Lacome, P. Arcas, A. Levy, “Oxygen- and Air-Broadened Linewidths of CO2,” Appl. Opt. 25, 2584 (1986). [CrossRef] [PubMed]
  24. G. Yamamoto, M. Tanaka, T. Aoki, “Estimation of Rotational Line Widths of Carbon Dioxide Bands,” J. Quant. Spectrosc. Radiat. Transfer 9, 371 (1969). [CrossRef]
  25. J. P. Bouanich, C. Brodbeck, “Contribution des moments octupolaire et hexadécapolaire à l’élargissement des raies spectrales de molécules linéaires,” J. Quant. Spectrosc. Radiat. Transfer 14, 141 (1974). [CrossRef]
  26. D. Robert, J. Bonamy, “Short Range Force Effects in Semi-classical Molecular Line Broadening Calculations,” J. Phys. Paris 40, 923 (1979).
  27. M. C. Herpin, P. Lallemand, “Study of the Broadening of the Rotational Raman Lines of CO2 Perturbed by Rare Gases,” J. Quant. Spectrosc. Radiat. Transfer 15, 779 (1975). [CrossRef]
  28. K. S. Jammu, G. E. St. John, H. L. Welsh, “Pressure Broadening of the Rotational Raman Lines of Some Simple Gases,” Can. J. Phys. 44, 797 (1966). [CrossRef]
  29. C. G. Gray, J. Van Kranendonk, “Calculation of the Pressure Broadening of Rotational Raman Lines due to Multipolar and Dispersion Interaction,” Can. J. Phys. 44, 2411 (1966). [CrossRef]
  30. R. P. Srivastava, H. R. Zaidi, “Self-Broadened Widths of Rotational Raman and Infrared Lines in CO2,” Can. J. Phys. 55, 549 (1977). [CrossRef]
  31. Y. Ouazzany, J. P. Boquillon, H. W. Schrötter, “High Resolution CARS Spectrum and Analysis of the ν1-Band Q Branch of Carbon Dioxyde,” submitted to Mol. Phys.
  32. M. O. Bulanin, V. P. Bulychev, E. B. Khodos, “Determination of the Parameters of the Vibrational-Rotational Lines in the 9.4 and 10.4 μm Bands of CO2 at Different Temperatures,” Opt. Spectrosc. 48, 403 (1980).
  33. L. Rosenmann, M. Y. Perrin, J. Taine, “Collisional Broadening of CO2 IR Lines. I. Diode Laser Measurements for CO2-N2 Mixtures in the 295–815 K Temperature Range,” J. Chem. Phys. 88, 2995 (1988). [CrossRef]
  34. L. Rosenmann, M. Y. Perrin, J. M. Hartmann, J. Taine, “Diode Laser Measurements and Calculations of CO2 Line-Broadening by H2O from 416 to 805 K and by N2 from 296 to 803 K,” submitted to J. Quant. Spectrosc. Radiat. Transfer.
  35. P. W. Anderson, “Pressure Broadening in the Microwave and Infrared Regions,” Phys. Rev. 76, 647 (1949). [CrossRef]
  36. C. J. Tsao, B. Curnutte, “Line-Widths of Pressure-Broadened Spectral Lines,” J. Quant. Spectrosc. Radiat. Transfer 2, 41 (1962). [CrossRef]
  37. J. Bonamy, D. Robert, “Atom-Atom Potential in Rotational Line Broadening for Molecular Gases: Application to CO Lines Broadened by CO, N2, O2 and NO,” J. Quant. Spectrosc. Radiat. Transfer 16, 185 (1976). [CrossRef]
  38. M. Margottin-Maclou, P. Dahoo, A. Henry, L. Henry, “Self-Broadening Parameters in the ν3 Band of 14N216O,” J. Mol. Spectrosc. 111, 275 (1985). [CrossRef]
  39. J. M. Hartmann, M. Y. Perrin, J. Taine, L. Rosenmann, “Diode-Laser Measurements and Calculations of CO 1-0 P(4) Line Broadening in the 295 to 765 K Temperature Range,” J. Quant. Spectrosc. Radiat. Transfer 35, 357 (1986). [CrossRef]
  40. J. M. Hartmann, J. Taine, J. Bonamy, B. Labani, D. Robert, “Collisional Broadening of Rotation-Vibration Lines for Asymmetric-top Molecules. II H2O Diode Laser Measurements in the 400–900 K Range; Calculations in the 300–2000 K Range,” J. Chem. Phys. 86, 144 (1987). [CrossRef]
  41. B. Labani, J. Bonamy, D. Robert, J. M. Hartmann, “Collisional Broadening of Rotation-Vibration Lines for Asymmetric-Top Molecules. III Self-Broadening Case; Application to H2O,” J. Chem. Phys. 87, 2781 (1987). [CrossRef]
  42. A. Bauer, M. Godon, M. Kheddar, J. M. Hartmann, J. Bonamy, D. Robert, “Temperature and Perturber Dependences of Water Vapor 380 GHz-Line Broadening,” J. Quant. Spectrosc. Radiat. Transfer 37, 531 (1987). [CrossRef]
  43. A. Soufiani, L. Rosenmann, “Diode-Laser Measurements and Calculations of CO-CO2 Line-Widths at High Temperature,” in press. J. Quant. Spectrosc. Radiat. Transfer.
  44. R. J. Hall, “Pressure-Broadened Linewidths for N2 Coherent Anti-Stokes Raman Spectroscopy Thermometry,” Appl. Spectrosc. 34, 700 (1980). [CrossRef]
  45. J. Bonamy, D. Robert, C. Boulet, “Simplified Models for the Temperature Dependence of Linewidths at Elevated Temperatures and Applications to CO Broadened by Ar and N2,” J. Quant. Spectrosc. Radiat. Transfer 31, 23 (1984). [CrossRef]
  46. B. Lavorel et al., “Rotational Collisional Line-Broadening at High Temperatures in the N2 Fundamental Q-Branch Studied with Stimulated Raman Spectroscopy,” J. Phys. 47, 417 (1986). [CrossRef]
  47. J. M. Flaud, C. Camy-Peyret; private communication.
  48. J. M. Hartmann, “Calculation of Self-Broadening Coefficients for H2O Raman-Lines,” J. Mol. Spectrosc. 127, 35 (1988). [CrossRef]
  49. A. Henry, M. Margottin-Maclou, N. Lacome, “N2- and O2-Broadening Parameters in the ν3 band of 14N216O,” J. Mol. Spectrosc. 111, 291 (1985). [CrossRef]
  50. H. S. Lowry, C. J. Fisher, “Line Parameter Measurements and Calculations of CO Broadened by Nitrogen at Elevated Temperatures,” J. Quant. Spectrosc. Radiat. Transfer 27, 585 (1982). [CrossRef]
  51. D. A. Greenhalgh, F. M. Porter, “A Polynomial Energy-Gap Model for Molecular Linewidths,” J. Quant. Spectrosc. Radiat. Transfer 34, 95 (1985). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 
Fig. 4
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited