OSA's Digital Library

Applied Optics

Applied Optics


  • Vol. 27, Iss. 23 — Dec. 1, 1988
  • pp: 4814–4818

Fiber-optic sensing of electric field components

K. M. Bohnert and J. Nehring  »View Author Affiliations

Applied Optics, Vol. 27, Issue 23, pp. 4814-4818 (1988)

View Full Text Article

Enhanced HTML    Acrobat PDF (649 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Symmetry properties of the converse piezoelectric effect are investigated for their use in fiber-optic sensing of individual electric field components. Three basic sensor designs are analyzed in detail. Suitable sensor materials are identified and relevant material properties are discussed. The sensitivity of the sensor to a specified field component is experimentally verified. A dynamic range of approximately 5 orders of magnitude is found for frequencies in the kilohertz range. The sensor concept is compared to electrooptic sensors.

© 1988 Optical Society of America

Original Manuscript: March 16, 1988
Published: December 1, 1988

K. M. Bohnert and J. Nehring, "Fiber-optic sensing of electric field components," Appl. Opt. 27, 4814-4818 (1988)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. T. Sasano, “Laser CT and Laser PD for EHV Power Transmission Lines,” Electr. Eng. in Jpn. (Engl. transl. of Denki Gakkai Zasshi) 93, 91 (1973). [CrossRef]
  2. G. A. Massey, D. C. Erickson, R. A. Kadlec, “Electromagnetic Field Components: Their Measurement Using Linear Electrooptic and Magnetooptic Effects,” Appl. Opt. 14, 2712 (1975). [CrossRef] [PubMed]
  3. R. E. Hebner, R. A. Malewski, E. C. Cassidy, “Optical Methods of Electrical Measurements at High Voltage Levels,” Proc. IEEE 65, 1524 (1977). [CrossRef]
  4. A. J. Rogers, “Optical Measurement of Current and Voltage on Optical Power Systems,” Electr. Power Appl. 2, 120 (1979). [CrossRef]
  5. Y. Hamasaki, H. Gotoh, M. Katoh, S. Takeuchi, “OPSEF: An Optical Sensor for Measurement of High Electric Field Intensity,” Electron. Lett. 16, 406 (1980). [CrossRef]
  6. K. Hidaka, H. Fujita, “A New Method of Electric Field Measurements in Corona Discharge Using Pockels Device,” J. Appl. Phys. 53, 5999 (1982). [CrossRef]
  7. K. Kyuma, S. Tai, M. Nunoshita, N. Mikami, Y. Ida, “Fiber-Optic Current and Voltage Sensors Using a Bi12GeO20 Single Crystal,” IEEE/OSA J. Lightwave Technol. LT-1, 93 (1983). [CrossRef]
  8. W. Epping, A. Kuchler, A. Schwab, “Elektrische Feldstarkemessung mit doppelbrechenden und optisch aktiven Kristallen,” Arch. Elektrotech. Berlin 67, 329 (1984). [CrossRef]
  9. S. R. M. Robertson, A. J. Rogers, “Measurement of DC Electric Fields Using the Electro-Optic Effect,” IEE Proc. 132, 195 (1985).
  10. N. A. F. Jaeger, L. Young, “Asymmetric Slab and Strip-Loaded Integrated Optic Devices for the Measurement of Large Electric Fields,” IEEE/OSA J. Lightwave Technol. LT-5, 745 (1987). [CrossRef]
  11. M. Kuribara, Y. Takeda, “Liquid Core Optical Fiber for Voltage Measurement Using Kerr Effect,” Electron. Lett. 19, 133 (1983). [CrossRef]
  12. M. C. Farries, A. J. Rogers, “Temperature Dependence of the Kerr Effect in a Silica Optical Fiber,” Electron. Lett. 19, 890 (1983). [CrossRef]
  13. P. D. DeSouza, M. D. Mermelstein, “Electric Field Detection with a Piezoelectric Polymer-Jacketed Single-Mode Optical Fiber,” Appl. Opt. 21, 4214 (1982). [CrossRef] [PubMed]
  14. L. J. Donalds, W. G. French, W. C. Mitchell, R. M. Swinehart, T. Wei, “Electric Field Sensitive Optical Fiber Using Piezoelectric Polymer Coating,” Electron. Lett. 18, 327 (1982). [CrossRef]
  15. K. P. Koo, G. H. Sigel, “An Electric Field Sensor Utilizing a Piezoelectric Polyvinylidene Fluoride (PVF2) Film in a Single-Mode Fiber Interferometer,” IEEE J. Quantum Electron. QE-18, 670 (1982). [CrossRef]
  16. T. Yoshino, K. Kurosawa, K. Itoh, T. Ose, “Fiber-Optic Fabry-Perot Interferometer and Its Sensor Applications,” IEEE J. Quantum Electron. QE-18, 1624 (1982). [CrossRef]
  17. M. D. Mermelstein, “Optical-Fiber Copolymer-Film Electric-Field Sensor,” Appl. Opt. 22, 1006 (1983). [CrossRef] [PubMed]
  18. M. Imai, H. Tanizawa, Y. Ohtsuka, Y. Takase, A. Odajima, “Piezoelectric Copolymer Jacketed Single-Mode-Fibers for Electric-Field Sensor Applications,” J. Appl. Phys. 60, 1916 (1986). [CrossRef]
  19. To be published in a forthcoming paper.
  20. J. F. Nye, Physical Properties of CrystalsOxford U.P., London, 1967).
  21. For our sensing application, the naked piezoelectric material is exposed to an electric field, whereas in certain transducer applications the electric field is applied by means of metallic contacts. In the latter case the internal field is independent of ∊, whereas in the former case it is not. It should be noted, however, that in general the internal field is not simply a linear function of the reciprocal permittivity but depends on the sensor geometry as well.
  22. Landoldt-Börnstein, “Elastic, Piezoelectric, Piezooptic, and Electrooptic Constants of Crystals,” K.-H. Hellwege, A. M. Hellwege, Eds., New Series III1,2; Springer-Verlag1966 and references therein.
  23. As described by Massey et al. sensing of individual field components can also be achieved by appropriate electrooptic crystals (see Ref. 2).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited