OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Vol. 27, Iss. 23 — Dec. 1, 1988
  • pp: 4861–4873

Invariant imbedding T matrix approach to electromagnetic scattering

B. R. Johnson  »View Author Affiliations


Applied Optics, Vol. 27, Issue 23, pp. 4861-4873 (1988)
http://dx.doi.org/10.1364/AO.27.004861


View Full Text Article

Enhanced HTML    Acrobat PDF (1518 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

A new method for calculating electromagnetic scattering from an arbitrarily shaped, inhomogeneous, dielectric object is developed. The method is based on an invariant imbedding procedure for computing the T matrix that was originally developed to solve quantum mechanical scattering problems. The final outcome of this approach is a two-term recurrence relation which can be solved numerically for the T matrix. The limiting form of this recurrence relation is a first-order nonlinear differential equation that is identical in form to the quantum mechanical Calogero equation. The results of several test calculations are also presented.

© 1988 Optical Society of America

History
Original Manuscript: April 19, 1988
Published: December 1, 1988

Citation
B. R. Johnson, "Invariant imbedding T matrix approach to electromagnetic scattering," Appl. Opt. 27, 4861-4873 (1988)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-27-23-4861


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. B. R. Johnson, D. Secrest, “Quantum Mechanical Calculations of the Inelastic Cross Sections for Rotational Excitation of Para and Ortho H2 upon Collision with He,” J. Chem. Phys. 48, 4682 (1968). [CrossRef]
  2. C. T. Tai, Dyadic Green’s Function in Electromagnetic Theory (Intext Educational Publishers, Scranton, PA, 1971).
  3. R. Newton, Scattering Theory of Particles and Waves (McGraw-Hill, New York, 1966).
  4. J. A. Stratton, Electromagnetic Theory (McGraw-Hill, New York, 1941).
  5. M. Abramowitz, I. A. Stegun, Eds., Handbook of Mathematical Functions (Dover, New York, 1965).
  6. A. D. Yaghjian, “Electric Dyadic Green’s Function in the Source Region,” Proc. IEEE 68, 248 (1980). [CrossRef]
  7. C. T. Tai, “Comments on Electric Dyadic Green’s Functions in the Source Region,” Proc. IEEE 69, 282 (1981). [CrossRef]
  8. J. Van Bladel, “Some Remarks on Green’s Dyadic for Infinite Space,” IRE Trans. Antennas Propag. AP-9, 563 (1961). [CrossRef]
  9. C. T. Tai, “On the Eigenfunction Expansion of Dyadic Green’s Functions,” Proc. IEEE 61, 480 (1973). [CrossRef]
  10. R. E. Collin, “On the Incompleteness of E and H Modes in Wave Guides,” Can. J. Phys. 51, 1135 (1973). [CrossRef]
  11. A. Q. Howard, “On the Longitudinal Component of the Green’s Function Dyadic,” Proc. IEEE 62, 1704 (1974). [CrossRef]
  12. Y. Rahmit-Sami, “On the Question of Computation of the Dyadic Green’s Function at the Source Region in Waveguides and Cavities,” IEEE Trans. Microwave Theory Tech. MTT-23, 762 (1975). [CrossRef]
  13. K. M. Chen, “A Simple Physical Picture of Tensor Green’s Function in Source Region,” Proc. IEEE 65, 1202 (1977). [CrossRef]
  14. R. Bellman, G. M. Wing, An Introduction to Invariant Imbedding (Wiley, New York, 1975).
  15. S. Flugge, Practical Quantum Mechanics (Springer-Verlag, New York, 1974), problem 97, Calogero’s equation.
  16. H. C. van de Hulst, Light Scattering by Small Particles (Dover, New York, 1981).
  17. M. Kerker, The Scattering of Light and Other Electromagnetic Radiation (Academic, New York, 1969).
  18. S. R. Aragon, M. Elwenspoek, “Mie Scattering from Thin Spherical Bubbles,” J. Chem. Phys. 77, 3406 (1982). [CrossRef]
  19. S. L. Aden, M. Kerker, “Scattering of Electromagnetic Waves from Two Concentric Spheres,” J. Appl. Phys. 22, 1242 (1951). [CrossRef]
  20. B. Carnahan, H. Luther, J. Wilkes, Applied Numerical Methods (Wiley, New York, 1969).
  21. R. K. Luneburg, The Mathemtical Theory of Optics (U. California Press, Berkeley, 1964).
  22. C. T. Tai, “The Electromagnetic Theory of the Spherical Luneberg Lens,” Appl. Scient. Res. Sect. B 7, 113 (1958). [CrossRef]
  23. P. J. Wyatt, “Scattering of Electromagnetic Plane Waves from Inhomogeneous Spherically Symmetric Objects,” Phys. Rev. 127, 1837 (1962); Errata Phys. Rev. 134, AB1 (1964). [CrossRef]
  24. S. Asano, G. Yamamoto, “Light Scattering by a Spheroidal Particle,” Appl. Opt. 14, 29 (1975). [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 
Fig. 4 Fig. 5
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited