OSA's Digital Library

Applied Optics

Applied Optics


  • Vol. 27, Iss. 24 — Dec. 15, 1988
  • pp: 5051–5066

Electrooptic effect calculations: simplified procedure for arbitrary cases

Theresa A. Maldonado and Thomas K. Gaylord  »View Author Affiliations

Applied Optics, Vol. 27, Issue 24, pp. 5051-5066 (1988)

View Full Text Article

Enhanced HTML    Acrobat PDF (2061 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



To aid in the design of electrooptic devices, a simplified procedure is introduced for determining the principal indices of refraction and the orientations of the index ellipsoid when an electric field is applied. The approach employs the general Jacobi method, and it is applicable to an arbitrary isotropic, uniaxial, or biaxial crystal class with an arbitrary direction of applied field. It includes a straightforward approach for labeling the new principal dielectric axes so as to produce the minimum global rotation of the ellipsoid from the zero-field principal dielectric axes. The necessary calculations can be easily implemented with a pocket calculator and are often found to be more accurate than those obtained with larger computers using standard library math packages. Furthermore, for analyzing device performance, simple analytic expressions for the orientations of the fast and slow polarization axes and the fast and slow indices of refraction are derived for a given arbitrary direction of optical propagation and any arbitrary direction of applied electric field. The calculational procedure is applicable to linear and quadratic electrooptic effects and the photoelastic effect in isotropic, uniaxial, and biaxial crystals. Illustrative examples for GaAs, LiNbO3, and KDP are presented.

© 1988 Optical Society of America

Original Manuscript: July 7, 1988
Published: December 15, 1988

Theresa A. Maldonado and Thomas K. Gaylord, "Electrooptic effect calculations: simplified procedure for arbitrary cases," Appl. Opt. 27, 5051-5066 (1988)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. See, for example, Special Issue on Electrooptic Materials and Devices, IEEE J. Quantum Electron. QE-23 (Dec.1987).
  2. W. J. Tomlinson, C. A. Brackett, “Telecommunications Applications of Integrated Optics and Optoelectronics,” Proc. IEEE 75, 1512 (1987). [CrossRef]
  3. E. Voges, A. Neyer, “Integrated-Optic Devices on LiNbO3 for Optical Communication,” IEEE/OSA J. Lightwave Technol. LT-5, 1229 (1987). [CrossRef]
  4. H. F. Taylor, “Application of Guided-Wave Optics in Signal Processing and Sensing,” Proc. IEEE 75, 1524 (1987). [CrossRef]
  5. See, for example, Special Issue on Optical ComputingProc. IEEE 72 (1984).
  6. See, for example, “Special Feature on Integrated Optics: Evolution and Prospects,” Opt. News 14 (Feb.1988).
  7. T. K. Gaylord, E. I. Verriest, “Matrix Triangularization Using Arrays of Integrated Optical Givens Rotation Devices,” Computer 20, 59 (1987). [CrossRef]
  8. C. M. Verber, R. P. Kenan, J. R. Busch, “Design and Performance of an Integrated Optical Digital Correlator,” IEEE/OSA J. Lightwave Technol. LT-1, 256 (1983). [CrossRef]
  9. C. L. Chang, C. S. Tsai, “Electro-Optic Analog-to-Digital Conversion Using Channel Waveguide Fabry-Perot Modulator Array,” Appl. Phys. Lett. 43, 22 (1983). [CrossRef]
  10. C. M. Verber, “Integrated-Optical Approaches to Numerical Optical Processing,” Proc. IEEE 72, 942 (1984). [CrossRef]
  11. D. Eimerl, “Symmetry of the Electro-Optic Effect,” IEEE J. Quantum Electron. QE-23, 2104 (1987). [CrossRef]
  12. J. F. Nye, Physical Properties of Crystals (Oxford U.P., London, 1957).
  13. W. L. Bond, “The Mathematics of the Physical Properties of Crystals,” Bell Syst. Tech. J. 23, 1 (1943).
  14. D. E. Sands, Vectors and Tensors in Crystallography (Addison-Wesley, Reading, MA, 1982).
  15. D. R. Hartree, Numerical Analysis (Clarendon, Oxford, 1952).
  16. M. Born, E. Wolf, Principles of Optics (Pergamon, New York, 1959).
  17. A. Yariv, P. Yeh, Optical Waves in Crystals (Wiley, New York, 1983).
  18. L. D. Landau, E. M. Lifshitz, Electrodynamics of Continuous Media (Pergamon, London, 1960).
  19. J. H. Wilkinson, The Algebraic Eigenvalue Problem (Oxford U.P., London, 1965).
  20. A. I. Borisenko, I. E. Tarapov, Vector and Tensor Analysis with Applications (Prentice-Hall, Englewood Cliffs, NJ, 1968), R. A. Silverman, translator and editor.
  21. I. P. Kaminow, An Introduction to Electrooptic Devices (Academic, New York, 1974).
  22. T. C. Phemister, “Fletcher’s Indicatrix and the Electromagnetic Theory of Light,” Am. Mineral. 39, 173 (1954).
  23. W. A. Wooster, A Textbook on Crystal Physics (Cambridge University Press, Cambridge, 1938).
  24. P. Gay, An Introduction to Crystal Optics (Longsmans, Green, & Co., London, 1967).
  25. F. D. Bloss, An Introduction to the Methods of Optical Crystallography (Holt, Rinehart, & Winston, New York, 1961).
  26. P. F. Kerr, Optical Mineralogy (McGraw-Hill, New York, 1959).
  27. A. Yariv, Optical Electronics (Holt, Rinehart, & Winston, New York, 1976).
  28. W. H. Press, B. P. Flannery, S. A. Teukolsky, W. T. Vetterling, Numerical Recipes (Cambridge U.P., New York, 1986).
  29. J. H. Wilkinson, C. Reinsch, Handbook for Automatic Computation (Springer-Verlag, New York, 1971). [CrossRef]
  30. G. H. Golub, C. F. Van Loan, Matrix Computations (John Hopkins U.P., Baltimore, MD, 1983).
  31. B. N. Parlett, The Symmetric Eigenvalue Problem (Prentice-Hall, Englewood Cliffs, NJ, 1980).
  32. F. A. Hopf, G. I. Stegeman, Applied Classical Electrodynamics, Vol. 1: Linear Optics (Wiley, New York, 1985).
  33. H. Goldstein, Classical Mechanics (Addison-Wesley, Reading, MA, 1981).
  34. R. P. Paul, Robot Manipulators (MIT Press, Cambridge, MA, 1981).
  35. S. Namba, “Electro-Optical Effect of Zincblende,” J. Opt. Soc. Am. 51, 76 (1961). [CrossRef]
  36. P. V. Lenzo, E. G. Spencer, K. Nassau, “Electro-Optic Coefficients in Single-Domain Ferroelectric Lithium Niobate,” J. Opt. Soc. Am. 56, 633 (1966). [CrossRef]
  37. B. H. Billings, “The Electro-Optic Effect in Uniaxial Crystals of the type X H2PO4. I. Theoretical,” J. Opt. Soc. Am. 39, 797 (1949). [CrossRef]
  38. IMSL Library Reference Manual (International Mathematical & Statistical Libraries, Inc., Houston TX, 1980), edition 9.2.
  39. R. J. Willard, “A Re-Examination of Some Mathematical Relations in Anisotropic Substances,” Trans. Am. Microsc. Soc. 80, 191 (1961). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited