OSA's Digital Library

Applied Optics

Applied Optics


  • Vol. 27, Iss. 3 — Feb. 1, 1988
  • pp: 516–522

Wave front equation, caustics, and wave aberration function of simple lenses and mirrors

Abd M. Kassim and David L. Shealy  »View Author Affiliations

Applied Optics, Vol. 27, Issue 3, pp. 516-522 (1988)

View Full Text Article

Enhanced HTML    Acrobat PDF (778 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Using the condition of constant optical path length for rays passing through an optical system, an equation for the wave front is presented in a simplified form. The wave front equation has been explicitly evaluated for a plane wave incident on a spherical reflector or a plano-convex lens. Then, the principal radii of curvature of the reflected or refracted wave front, evaluated directly from the wave front equation, are shown to locate the caustic surfaces of the optical system. From the wave front equation, a closed form expression for the wave aberration function for a plane wave reflected by a spherical mirror or a plano-corvex lens has been evaluated and compared to the results obtained from third-order aberration theory.

© 1988 Optical Society of America

Original Manuscript: May 28, 1987
Published: February 1, 1988

Abd M. Kassim and David L. Shealy, "Wave front equation, caustics, and wave aberration function of simple lenses and mirrors," Appl. Opt. 27, 516-522 (1988)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. M. Born, E. WolfPrinciples of Optics (Pergamon, New York, 1959), pp. 108–29.
  2. J. L. Synge, W. Corway, The Mathematical Papers of Hamilton (Cambridge U. P., London, 1931).
  3. V. A. Fock, Electromagnetic Diffraction and Propagation Problem (Pergamon, New York, 1960), p. 160.
  4. O. N. Stavroudis, R. C. Fronczek, “Caustic Surfaces and the Structure of the Geometrical Optics,” J. Opt. Soc. Am. 66, 795 (1976). [CrossRef]
  5. O. N. Stavroudis, “Tracing Wavefronts: Can it be Done?,” Proc. Soc. Photo-Opt. Instrum. Eng. 766, 18 (1987).
  6. J. A. Kneisly, “Local Curvature of Wave Fronts in an Optical System,” J. Opt. Soc. Am. 54, 229 (1964). [CrossRef]
  7. J. M. Rebordao, M. Grosmann, “Refraction on Spherical Surfaces. I: an Exact Algebraic Approach,” J. Opt. Soc. Am. A 1, 51 (1984). [CrossRef]
  8. L. Seidel, “On Dioptics on the Development of Third Order Coefficients,” Astron. Nachr. 43, 289 (1956). [CrossRef]
  9. H. A. Buchdahl, Optical Aberration Coefficients (Dover, New York, 1968), p. 35.
  10. P. J. Sands, “Off-Axis Aberration Coefficients,” Thesis, Australian National University, Australia (1967).
  11. W. T. Welford, “A New Total Aberration Formula,” Opt. Acta 19, No. 9, 719 (1972). [CrossRef]
  12. H. H. Hopkins, Wave Theory of Aberrations (Oxford U.P., London, 1950), Chap. 1.
  13. W. T. Welford, Aberration of the Symmetrical Optical System (Academic, New York, 1974), pp. 4–45.
  14. E. Kreyszig, Introduction to Differential Geometry and Riemannian (U. Toronto Press, Toronto, Ont., 1968), pp. 57–99.
  15. D. G. Burkhard, D. L. Shealy, “Formula for the Density of Tangent Rays over a Caustic Surface,” Appl. Opt. 21, 3299 (1982). [CrossRef] [PubMed]
  16. O. N. Stavroudis, The Optics of Rays, Wave Front and Caustics (Academic, New York, 1972), p. 157.
  17. B. R. Nijboer, “Title,” Physica 10, 679 (1943). [CrossRef]
  18. E. L. O’Neil, Introduction to Statistical Optics (Addison-Wesley, Reading, MA, 1963), Chap. 4.
  19. D. L. Shealy, D. G. Burkhard, “Analytical Illuminance Calculation in a Multi-Surface Optical System,” Opt. Acta 22, 485 (1975). [CrossRef]
  20. W. J. Smith, Modern Optical Engineering (McGraw-Hill, New York, 1966).
  21. M. Schwartz, S. Green, W. A. Rutledge, Vector Analysis (Harper & Row, New York, 1969).
  22. F. A. Jenkins, H. E. White, Fundamentals of Optics (McGraw-Hill, New York, 1957), p. 173.
  23. M. Herzberger, Modern Geometrical Optics (Wiley-Interscience, New York, 1958), pp. 299–379.
  24. SYMBOLIC, Inc., Eleven Cambridge Center, Cambridge, MA 02142.

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited