OSA's Digital Library

Applied Optics

Applied Optics


  • Vol. 27, Iss. 3 — Feb. 1, 1988
  • pp: 567–577

Nonlinear effects on pulsed laser propagation in the atmosphere

W. E. Martin and R. J. Winfield  »View Author Affiliations

Applied Optics, Vol. 27, Issue 3, pp. 567-577 (1988)

View Full Text Article

Enhanced HTML    Acrobat PDF (1329 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Nonlinear effects on the propagation of a high power pulsed laser beam through the earth’s atmosphere are modeled. Stimulated Raman scattering in relatively modest power laser beams is estimated to be very significant when extremely long path lengths are considered. Whole beam self-focusing may also seriously affect beam propagation. The observation of these phenomena is likely to be enhanced by wavefront compensation techniques to remove linear refractive-index atmospheric effects such as beam steering and scintillation. Examples of space to ground and ground to space beam propagation are presented.

© 1988 Optical Society of America

Original Manuscript: June 5, 1987
Published: February 1, 1988

W. E. Martin and R. J. Winfield, "Nonlinear effects on pulsed laser propagation in the atmosphere," Appl. Opt. 27, 567-577 (1988)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. See V. E. Zuev, Laser Beams in the Atmosphere [Consultants Bureau (Plenum), New York, 1982], and the references contained therein. [CrossRef]
  2. See, for example, F. G. Gebhardt, “High Power Laser Propagation,” Appl. Opt. 15, 1479 (1976). [CrossRef] [PubMed]
  3. J. A. Fleck, J. R. Morris, M. D. Feit, “Time-Dependent Propagation of High Energy Laser Beams Through the Atmosphere,” Appl. Phys. 10, 129 (1976). [CrossRef]
  4. R. L. Armstrong, S. A. W. Genstl, A. Zardecki, “Nonlinear Pulse Propagation in the Presence of Evaporating Aerosols,” J. Opt. Soc. Am. A 2, 1739 (1985). [CrossRef]
  5. See, for example, S. A. Akhmanov, R. V. Khokhlov, A. P. Sukhorukov, “Self-Focusing, Self-Defocusing and Self-Modulation of Laser Beams,” in Laser Handbook. Vol. 1, F. T. Arecchi, E. O. Shulz Dubois, Eds. (North-Holland, Amsterdam, 1972).
  6. G. C. Herring, M. J. Dyer, W. K. Bischel, “Temperature and Wavelength Dependence of the Rotational Raman Gain Coefficient in N2,” Opt. Lett. 11, 348 (1986). [CrossRef] [PubMed]
  7. M. Rokni, A. Flusberg, “Simulated Rotational Raman Scattering in the Atmosphere,” IEEE J. Quantum Electron. QE-22, 1102 (1986). [CrossRef]
  8. M. A. Henesian, C. D. Swift, J. R. Murray, “Stimulated Rotational Raman Scattering in Nitrogen in Long Air Paths,” Opt. Lett. 10, 565 (1985). [CrossRef] [PubMed]
  9. F. X. Kneizys et al., “Atmospheric Transmittance/Radiance: Computer Code lowtran 6,” AFGL-TR-83-0187, 1Aug.1983 (Air Force Geophysics Laboratory, Hanscom AFB, MA 01731).
  10. U.S. Standard Atmosphere, 1976, NOAA S/T 76-1562, Washington, D.C.
  11. M. J. McEwan, L. F. Phillips, Chemistry of the Atmosphere (Wiley, New York, 1975).
  12. R. D. Hudson, “Critical Review of Photoabsorption Cross Sections,” NSRDS-NBS38 (1971)
  13. D. V. Vlasov, R. A. Garaev, V. V. Korobin, R. S. Serov, “Measurement of Nonlinear Polarisability of Air,” Sov. Phys. JETP 49, 1033 (1979).
  14. W. G. Rado, “The Nonlinear Third Order Dielectric Susceptibility Coefficients of Gases and Optical Third Harmonic Generation,” Appl. Phys. Lett. 11, 123 (1967). [CrossRef]
  15. L. V. Goryachev, F. V. Grigorev, V. V. Kalinovskii, S. B. Kormer, L. M. Lavrov, V. P. Chuding, “Self-Focusing of a Laser Beam as a whole in Air,” Sov. J. Quantum Electron. 7, 510 (1977). [CrossRef]
  16. J. R. Murray, J. Goldhar, D. Eimerl, A. Szoke, “Raman Pulse Compression of Excimer Lasers for Application to Laser Fusion,” IEEE J. Quantum Electron. QE-15, 342 (1979). [CrossRef]
  17. J. M. Cherlow, T. T. Yang, R. W. Hellwarch, “Nonlinear Optical Susceptibilities of Solvents,” IEEE J. Quantum Electron. QE-13, 644 (1976). [CrossRef]
  18. V. I. Bespalov, V. I. Talanov, “Filamentary Structure of Light Beams in Nonlinear Liquids,” JETP Lett. 3, 307 (1966).
  19. J. A. Fleck, J. R. Morris, E. S. Bliss, “Small-Scale Self-Focusing Effects in a High Power Glass Laser System,” IEEE J. Quantum Electron. QE-14, 353 (1978). [CrossRef]
  20. J. F. Holzrichter, “High Power Solid State Lasers,” Nature London 316, 311 (1985). [CrossRef]
  21. D. C. Brown, “High Peak Power Nd-Glass Laser Systems,” Opt. Sci. 25, 188 (1981).
  22. P. Lallemand, “The Stimulated Raman Effect,” in The Raman Effect, Vol. 1, A. Anderson, Ed. (Dekker, New York, 1971).
  23. H. W. Schrother, H. W. Klochner, “Raman Scattering Cross Sections in Gases and Liquids,” A. Weber, Ed., in Raman Spectroscopy (Springer-Verlag, New York, 1979).
  24. H. A. Hyatt, J. M. Cherlow, W. R. Fenner, S. P. S. Porto, “Cross Section for the Raman Effect in Molecular Nitrogen Gas,” J. Opt. Soc. Am. 63, 1604 (1973). [CrossRef]
  25. W. R. Fenner, H. A. Hyatt, J. M. Kellam, S. P. S. Porto, “Raman Cross Section of Some Simple Gases,” J. Opt. Soc. Am. 63, 73 (1973). [CrossRef]
  26. A. Weber, “High Resolution Rotational Raman Spectra of Gases,” in Raman Spectroscopy, A. Weber, Ed. (Springer-Verlag, New York, 1979).
  27. V. S. Averbakh, A. I. Makarov, V. I. Talanov, “Stimulated Raman Scattering on Rotational and Vibrational Transitions in Nitrogen Gas,” Sov. J. Quantum Electron, 8, 472 (1978). [CrossRef]
  28. C. M. Penny, R. L. St. Peters, M. Lapp, “Absolute Rotational Raman Cross Sections for N2, O2, and CO2” J. Opt. Soc. Am. 64, 712 (1974). [CrossRef]
  29. I. I. Kondilenko, P. A. Korotov, V. A. Klimenko, N. G. Golubeva, “Absolute Raman Scattering Cross Sections of the Rotational Lines of Nitrogen and Oxygen,” Opt. Spectrosc. (USSR) 48, 411 (1980).
  30. G. I. Kachen, W. H. Lowdermilk, “Relaxation Oscillations in Stimulated Raman Scattering,” Phys. Rev. A 16, 1657 (1977). [CrossRef]
  31. E. E. Hagenlocker, R. W. Minch, W. G. Rado, “Effects of Phonon Lifetime on Stimulated Optical Scattering in Gases,” Phys. Rev. 154, 226 (1967) [CrossRef]
  32. W. K. Bischel, G. Black, “Wavelength Dependence of Raman Scattering Cross Sections from 200–600 nm,” in Excimer Lasers—1983, AIP Conf. Proc. 100, C. K. Rhodes, H. Egger, H. Pummer, Eds. (American Institute of Physics, New York, 1983).
  33. See, for example, R. H. Huddleston, S. L. Leonard, Eds., Plasma Diagnostic Techniques, (Academic, New York, 1965).
  34. W. K. Bischel, SRI International; private communication.
  35. W. K. Bischel, J. Bokor, D. J. Kligler, C. K. Rhodes, “Nonlinear Optical Processes in Atoms and Molecules Using Rare Gas Halide Lasers,” IEEE J. Quantum Electron. QE-15, 380 (1979). [CrossRef]
  36. W. E. Martin, G. J. Caporaso, W. M. Fawley, D. Prosnitz, A. G. Cole, “Electron-Beam Guiding and Phase-Mix Damping by a Laser Ionized Channel,” Phys. Rev. Lett. 54, 685 (1985). [CrossRef] [PubMed]
  37. A. Yariv, Introduction to Optical Electronics (Holt, Rinehart, & Wilson, New York, 1976), Chap. 3.
  38. J. P. Partanen, M. J. Shaw, “High Power Forward Raman Amplifiers Employing Low Pressure Gases in Lightguides, I Theory and Applications,” J. Opt. Soc. Am. B 3, 1374 (1986). [CrossRef]
  39. M. J. Shaw, J. P. Partanen, Y. Owadano, I. N. Ross, E. Hodgson, C. B. Edwards, F. O’Neill, “High-Power Forward Raman Amplifiers Employing Low-Pressure Gases in Light Guides. II. Experiments,” J. Opt. Soc. Am. B 3, 1466 (1986). [CrossRef]
  40. See I. P. Christov, I. V. Tomov, “Growth of Raman-Stokes Waves in Focused Pump Beams,” Opt. Quantum Electron. 17, 207 (1985). [CrossRef]
  41. P. A. Belanger, C. Pare, “Self-Focusing of Gaussian Beams: An Alternate Derivation,” Appl. Opt. 22, 1293 (1983). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited