OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Vol. 27, Iss. 3 — Feb. 1, 1988
  • pp: 593–598

Effect of temperature, atmospheric condition, and particle size on extinction in a plume of volatile aerosol dispersed in the atmospheric surface layer

Tate T. H. Tsang, Prasad Pai, and Nitin V. Korgaonkar  »View Author Affiliations


Applied Optics, Vol. 27, Issue 3, pp. 593-598 (1988)
http://dx.doi.org/10.1364/AO.27.000593


View Full Text Article

Enhanced HTML    Acrobat PDF (814 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

The objective of this work is to study the effects of ambient temperature, atmospheric condition, and particle size on the extinction coefficient of diesel fuel and fog oil smoke. A first-order closure model is used to describe the turbulent diffusion of the smoke in the atmospheric surface layer. Mean values of wind speed and diffusivity in the vertical direction are obtained by the use of the Monin-Obukhov similarity theory. The 2-D crosswind line source model also includes the aerosol kinetic processes of evaporation, sedimentation, and deposition. Numerical results are obtained from simulations on a supercomputer.

© 1988 Optical Society of America

History
Original Manuscript: May 26, 1987
Published: February 1, 1988

Citation
Tate T. H. Tsang, Prasad Pai, and Nitin V. Korgaonkar, "Effect of temperature, atmospheric condition, and particle size on extinction in a plume of volatile aerosol dispersed in the atmospheric surface layer," Appl. Opt. 27, 593-598 (1988)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-27-3-593


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. J. C. Kaimal, J. C. Wyngaard, D. A. Haugen, O. R. Cote, Y. Izumi, S. J. Caughey, C. J. Readings, “Turbulence Structure in the Convective Layer,” J. Atmos. Sci. 33, 2152 (1976). [CrossRef]
  2. G. K. Yue, A. Deepak, “Modeling of Coagulation Sedimentation Effects on Transmission of Visible/IR Laser Beams in Aerosol Media,” Appl. Opt. 18, 3918 (1979). [CrossRef] [PubMed]
  3. G. K. Yue, A. Deepak, “Modeling of Growth, Evaporation and Sedimentation Effect on Transmission of Visible and IR Laser Beams in Artificial Fogs,” Appl. Opt. 19, 3767 (1980). [CrossRef] [PubMed]
  4. J. R. Brock, “Processes, Sources and Particle Size Distributions,” in Fogs and Smokes, Faraday Symposium 7 (Chemical Society, London, 1973).
  5. C. Donaldson, “Construction of a Dynamic Model of the Production of Atmospheric Turbulence and the Dispersal of Atmospheric Pollutants,” in Workshop on Micrometeorology, D. A. Haugens, Ed. (American Meteorological Society, Boston, 1973).
  6. J. C. Wyngaard, Ed., “Large-Eddy Simulation,” DTIC, AD-A146381 (1984).
  7. T. H. Tsang, J. R. Brock, “Aerosol Coagulation in the Plume from a Cross-Wind Line Source,” Atmos. Environ. 16, 2229 (1982). [CrossRef]
  8. T. H. Tsang, J. R. Brock, “Effect of Coagulation on Extinction in an Aerosol Plume Propagating in the Atmosphere,” Appl. Opt. 21, 1588 (1982). [CrossRef] [PubMed]
  9. T. H. Tsang, J. R. Brock, “Dispersion of a Plume of Volatile Aerosol,” Aerosol Sci. Technol. 2, 429 (1983). [CrossRef]
  10. G. A. Sehmel, “Particle and Gas Dry Deposition: A Review,” Atmos. Environ. 14, 983 (1980). [CrossRef]
  11. N. A. Fuchs, A. G. Sutugin, “High-Dispersed Aerosols,” in Topics in Current Aerosol Research, Vol. 2 (Pergamon, Oxford, 1971).
  12. C. F. Bohrin, D. R. Huffman, Absorption and Scattering of Light by Small Particles (Wiley, New York, 1983).
  13. R. G. Lamb, “A Numerical Simulation of Dispersion from an Elevated Point Source in the Convective Planetary Boundary Layer,” Atmos. Environ. 12, 1297 (1978). [CrossRef]
  14. H. A. Panofsky, “The Atmospheric Boundary Layer Below 150 Meters,” Ann. Rev. Fluid Mech. 6, 147 (1974). [CrossRef]
  15. F. B. Smith, “Turbulence in the Atmospheric Boundary Layer,” Sci. Prog. Oxford 62, 127 (1975).
  16. J. A. Businger, J. C. Wyngaard, Y. Izumi, E. F. Bradley, “Flux-Profile Relationships in the Atmospheric Surface Layer,” J. Atmos. Sci. 28, 181 (1971). [CrossRef]
  17. C. A. Paulson, “The Mathematical Representation of Wind Speed and Temperature Profiles in the Unstable Atmospheric Surface Layer,” J. Appl. Meteorol. 9, 857 (1970). [CrossRef]
  18. E. L. Deacon, “Vertical Diffusion in the Lowest Layer of the Atmosphere,” Q.J. R. Meteorol. Soc. 75, 89 (1949). [CrossRef]
  19. S. J. Caughey, J. C. Wyngaard, K. C. Kaimal, “Turbulence in the Evolving Stable Boundary Layer,” J. Atmos. Sci. 16, 1041 (1979).
  20. A. P. Van Ulden, “Simple Estimates for Vertical Diffusion from Sources Near the Ground,” Atmos Environ. 12, 2125 (1978). [CrossRef]
  21. D. Golder, “Relations Among Stability Parameters in the Surface Layer,” Boundary Layer Meteorol. 3, 47 (1972). [CrossRef]
  22. F. A. Gifford, “Turbulent Diffusion-Typing Schemes: A Review,” Nucl. Safety 17, 68 (1976).
  23. F. T. M. Nieuwstadt, A. P. Van Ulden, “A Numerical Study on the Vertical Dispersion of Passive Contaminents from a Continuous Source in the Atmospheric Surface Layer,” Atmos. Environ. 12, 2119 (1978). [CrossRef]
  24. S. R. Hanna, “Application in Air Pollution Modeling,” in Atmospheric Turbulence and Air Pollution Modelling, F. T. M. Nieuwstadt, H. Van Dop, Eds. (Reidel, Dordrecht, 1982).
  25. J. W. Deardorff, G. E. Willis, “A Parametrization of Diffusion into the Mixed Layer,” J. Appl. Meteorol. 14, 1451 (1975). [CrossRef]
  26. T. H. Tsang, J. R. Brock, “Simulation of Condensation Aerosol Growth by Condensation and Evaporation,” Aerosol Sci. Technol. 2, 311 (1983).
  27. T. H. Tsang, N. Korgaonkar, “Effect of Evaporatin on the Extinction Coefficient of an Aerosol Cloud,” Aerosol Sci. Technol. (in press) 7, (1987).
  28. P. K. Smolarkiewicz, “A Fully Multidimensional Positive Definite Advection Transport Algorithm with Small Implicit Diffusion,” J. Comp. Phys. 54, 325 (1984). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited