OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Vol. 27, Iss. 3 — Feb. 1, 1988
  • pp: 627–630

Infrared measurements of increased CF2Cl2 (CFC-12) absorption above the South Pole

Curtis P. Rinsland, Aaron Goldman, Frank J. Murcray, Frank H. Murcray, David G. Murcray, and Joel S. Levine  »View Author Affiliations


Applied Optics, Vol. 27, Issue 3, pp. 627-630 (1988)
http://dx.doi.org/10.1364/AO.27.000627


View Full Text Article

Enhanced HTML    Acrobat PDF (605 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

High-resolution ground-based solar spectra recorded at the Amundsen-Scott South Pole station in Dec. 1980 and Nov. 1986 have been analyzed in the region of the CF2Cl2 (chlorofluorocarbon 12) ν8 band Q branches at 1161 cm−1. An increase in the CF2Cl2 total vertical column above the South Pole of 1.24 ± 0.15 over the 6-yr period, corresponding to an average rate of increase of 3.6 ± 2.1%, is derived. This rate of increase is lower than indicated by in situ measurements at the South Pole over the same time period, but there is agreement when the rather error bars of the spectral measurement results are considered. Spectroscopic parameters that can successfully model CF2Cl2 absorption at low temperatures are needed to improve retrieval accuracies and could be applied to a number of pre-1980 atmospheric spectral data sets in the literature to obtain an improved record of early CF2Cl2 concentration trends for comparison with estimates of historical release rates.

© 1988 Optical Society of America

History
Original Manuscript: July 1, 1987
Published: February 1, 1988

Citation
Curtis P. Rinsland, Aaron Goldman, Frank J. Murcray, Frank H. Murcray, David G. Murcray, and Joel S. Levine, "Infrared measurements of increased CF2Cl2 (CFC-12) absorption above the South Pole," Appl. Opt. 27, 627-630 (1988)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-27-3-627


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. A. Goldman, F. G. Fernald, F. J. Murcray, F. H. Murcray, D. G. Murcray, “Spectral Least Squares Quantification of Several Atmospheric Gases from High Resolution Infrared Solar Spectra Obtained at the South Pole,” J. Quant. Spectrosc. Radiat. Transfer 29, 189 (1983). [CrossRef]
  2. A. Goldman, F. J. Murcray, F. H. Murcray, D. G. Murcray, “Quantification of HCl from High Resolution Infrared Solar Spectra Obtained at the South Pole in December 1986,” Geophys. Res. Lett. 14, 622 (1987). [CrossRef]
  3. F. J. Murcray, F. H. Murcray, A. Goldman, D. G. Murcray, C. P. Rinsland, “Infrared Measurements of Several Nitrogen Species Above the South Pole in December 1980 and November–December 1986,” J. Geophys. Res. 92, 13,373 (1987). [CrossRef]
  4. M. J. Molina, F. S. Rowland, “Stratospheric Sink for Chloro-fluoromethanes: Chlorine Atom-Catalysed Destruction of Ozone,” Nature London 249, 810 (1974). [CrossRef]
  5. R. S. Stolarski, R. J. Cicerone, “Stratospheric Chlorine: A Possible Sink for Ozone,” Can. J. Chem. 52, 1610 (1974). [CrossRef]
  6. F. S. Rowland, M. J. Molina, “Chlorofluoromethanes in the Environment,” Rev. Geophys. Space Phys. 13, 1 (1975). [CrossRef]
  7. WMO Report 16, “Atmospheric Ozone 1985: Assessment of Our Understanding of the Processes Controlling its Present Distribution and Change,” World Meteorological Organization (1986).
  8. V. Ramanathan, R. J. Cicerone, H. B. Singh, J. T. Kiehl, “Trace Gas Trends and Their Potential Role in Climate Change,” J. Geophys. Res. 90, 5547 (1985). [CrossRef]
  9. W.-C. Wang, D. J. Wuebbles, W. M. Washington, R. G. Isaacs, G. Molnar, “Trace Gases and Other Potential Perturbations to Global Climate,” Rev. Geophys. 24, 110 (1986). [CrossRef]
  10. R. E. Dickinson, R. J. Cicerone, “Future Global Warming from Atmospheric Trace Gases,” Nature London 319, 109 (1986). [CrossRef]
  11. S. Solomon, R. R. Garcia, F. S. Rowland, D. Wuebbles, “On the Depletion of Antarctic Ozone,” Nature London 321, 755 (1986). [CrossRef]
  12. M. B. McElroy, R. J. Salawitch, S. C. Wofsy, J. A. Logan, “Reductions of Antarctic Ozone due to Synergistic Interactions of Chlorine and Bromine,” Nature London 321, 759 (1986). [CrossRef]
  13. M. Morillon-Chapey, A. O. Diallo, J.-C. Deroche, “Isotopic and Vibrational Assignments of Fluorocarbon-12 in the 8.6-μm and 10.8-μm Regions,” J. Mol. Spectrosc. 88, 424 (1981). [CrossRef]
  14. R. D. Blatherwick, F. J. Murcray, F. H. Murcray, A. Goldman, D. G. Murcray, “Atlas of South Pole IR Solar Spectra,” Appl. Opt. 21, 2658 (1982). [CrossRef] [PubMed]
  15. H. Jones, M. Morillon-Chapey, “The 923-cm−1 Band of CF235Cl2 (Freon 12), Studied by Infrared-Microwave Double Resonance,” J. Mol. Spectrosc. 91, 87 (1982). [CrossRef]
  16. H. Jones, G. Taubmann, M. Morillon-Chapey, “The ν6 Band of CF235Cl37Cl from IR-MW Double Resonance,” J. Mol. Spectrosc. 111, 179 (1985). [CrossRef]
  17. G. Taubmann, H. Jones, “Double Resonance Spectroscopy of Freon 12: Hot Bands of CF235Cl2 and CF235Cl37Cl and the ν6 Fundamental of CF237Cl2,” J. Mol. Spectrosc. 117, 283 (1986). [CrossRef]
  18. A. Goldman, C. Deroche, “Line Parameters for F12 in the 920 cm−1 Region,” U. Denver, Physics Department (July1986).
  19. S. T. Massie, A. Goldman, D. G. Murcray, J. C. Gille, “Approximate Absorption Cross Sections of F12, F11, ClONO2, N2O5, HNO3, CCl4, CF4, F21, F113, F114, and HNO4,” Appl. Opt. 24, 3426 (1985). [CrossRef] [PubMed]
  20. L. S. Rothman et al., “The HITRAN Database: 1986 Edition,” Appl. Opt. 26, 4058 (1987). [CrossRef] [PubMed]
  21. Nguyen-Van-Thanh, I. Rossi, A. Jean-Louis, H. Rippel, “Infrared Band Shapes and Band Strengths of CF2Cl2 from 800 to 1200 cm−1 at 296 K and 200 K,” J. Geophys. Res. 91, 4056 (1986). [CrossRef]
  22. J. W. Elkins, R. L. Sams, “Measurement of the Temperature Dependence on the Infrared Band Strengths of Halocarbons F-11 and F-12,” Natl. Bur. Stand. U.S. Rep. 553-K-86, CMA Ref. Rep. FC 83-473 (1986) 22 pp.
  23. J. W. Elkins, National Oceanic & Atmospheric Administration; personal communication (1987).
  24. A. Goldman, R. D. Blatherwick, “Analysis of High Resolution Solar Spectra in the 2.5 to 15 μm Region,” Final Report, Technical Description of Project and Results, U. Denver, Physics Department (June1980).
  25. A. Goldman, R. D. Blatherwick, F. J. Murcray, J. W. VanAllen, F. H. Murcray, D. G. Murcray, “Atlas of Stratospheric IR Absorption Spectra,” Appl. Opt. 21, 1163 (1982). [CrossRef] [PubMed]
  26. R. A. Rasmussen, M. A. K. Khalil, “Atmospheric Trace Gases: Trends and Distributions Over the Last Decade,” Science 232, 1623 (1986). [CrossRef] [PubMed]
  27. T. M. Thompson, W. D. Komhyr, E. G. Dutton, “Chlorofluorocarbon-11, -12, and Nitrous Oxide Measurements at the NOAA/GMCC Baseline Stations (16 Sept. 1973 to 31 Dec. 1979),” NOAA Tech. Rep. ERL 428-ARL 8, U. S. Department of Commerce, National Oceanic and Atmospheric Administration, Environmental Research Laboratories (June1985), 124 pp.
  28. D. R. Cronn et al., “Atmospheric Trace Gas Trends at Palmer Station, Antarctica: 1982–1985,” Geophys. Res. Lett. 13, 1272 (1986). [CrossRef]
  29. M. Migeotte, L. Neven, J. Swensson, “The Solar Spectrum from 2.8 to 23.7 Microns, Part I. Photometric Atlas,” Mém. Soc. R. Sci. Liège, Spec. Vol. 1, (1956).
  30. G. M. Stokes, Battelle Observatory; personal communication (1984).
  31. D. G. Murcray, F. S. Bonomo, J. N. Brooks, A. Goldman, F. H. Murcray, W. J. Williams, “Detection of Fluorocarbons in the Stratosphere,” Geophys. Res. Lett. 2, 109 (1975). [CrossRef]
  32. O. Lado-Bordowsky, “Absorption et Emission en Infrarouge de la Basse Atmosphere,” U. Pierre et Marie Curie, Laboratoire de Spectroscopie Moleculaire, Paris (1975).
  33. R. J. Nordstrom, J. H. Shaw, W. R. Skinner, W. H. Chan, J. G. Calvert, W. M. Uselman, “Application of Computer-Simulated Infrared Solar Spectra to the Detection of Atmospheric Fluorocarbon-12,” Appl. Spectrosc. 31, 224 (1977). [CrossRef]
  34. W. J. Williams, J. J. Kosters, A. Goldman, D. G. Murcray, “Measurements of Stratospheric Halocarbon Distributions using Infrared Techniques,” Geophys. Res. Lett. 3, 379 (1976). [CrossRef]
  35. C. M. Bradford, F. H. Murcray, J. W. VanAllen, J. N. Brooks, D. G. Murcray, A. Goldman, “Ground Level Detection and Feasibility for Monitoring of Several Trace Atmospheric Constituents by High Resolution Infrared Spectroscopy,” Geophys. Res. Lett. 3, 387 (1976). [CrossRef]
  36. P. L. Hanst, L. L. Spiller, D. M. Watts, J. W. Spence, M. F. Miller, “Infrared Measurement of Fluorocarbons, Carbon Tetrachloride, Carbonyl Sulfide, and Other Atmospheric Trace Gases,” J. Air Pollut. Control Assoc. 25, 1220 (1975). [CrossRef]
  37. J. A. Logan, M. J. Prather, S. C. Wofsy, M. B. McElroy, “Tropospheric Chemistry: A Global Perspective,” J. Geophys. Res. 86, 7210 (1981). [CrossRef]
  38. D. J. Wuebbels, M. C. MacCracken, F. M. Luther, “A Proposed Reference Set of Scenarios for Radiatively Active Atmospheric Constituents,” Rep. DOE/NBB-0066, Lawrence Livermore National Laboratory (1984).
  39. Chemical Manufacturers Association, “World Production and Release of Chlorofluorocarbons 11 and 12 Through 1981,” Rep. FPP 83-F, Chemical Manufacturers Association, Washington, DC (1982).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited