Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group

Numerical simulation and experimental studies of longitudinally excited miniature solid-state lasers

Not Accessible

Your library or personal account may give you access

Abstract

We present a numerical model for the transient response of a longitudinally pumped miniature solid-state laser. The model is suitable for both regenerative amplifiers and oscillators, provided the latter run in a single mode. The results of our calculations compare well with measurements of the peak output powers and pulse widths for a Nd:YAG rod pumped by a ten-stripe diode laser array. Our model predicts saturation at peak powers of approximately twice the 850 mW reported here due to filling of the lower laser level. To overcome this power limitation due to saturation, we also explore the use of miniature Nd:glass laser amplifiers to boost the single-frequency Nd:YAG pulses to powers exceeding 200 W.

© 1988 Optical Society of America

Full Article  |  PDF Article
More Like This
Laser diode side pumping of neodymium laser rods

Frank Hanson and Delmar Haddock
Appl. Opt. 27(1) 80-83 (1988)

Efficient pulsed 946-nm laser emission from Nd:YAG pumped by a titanium-doped sapphire laser

Yves Lutz, Olivier Musset, Jean Pierre Boquillon, and Antoine Hirth
Appl. Opt. 37(15) 3286-3289 (1998)

Optimization of a cw mode-locked frequency-doubled Nd:LiYF4 laser

Herman Vanherzeele
Appl. Opt. 27(17) 3608-3615 (1988)

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Figures (7)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Tables (2)

You do not have subscription access to this journal. Article tables are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Equations (14)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All rights reserved, including rights for text and data mining and training of artificial technologies or similar technologies.