OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Vol. 27, Iss. 9 — May. 1, 1988
  • pp: 1643–1650

Optical cellular processor architecture. 1 : Principles

Jean Taboury, J. M. Wang, Pierre Chavel, F. Devos, and Patrick Garda  »View Author Affiliations


Applied Optics, Vol. 27, Issue 9, pp. 1643-1650 (1988)
http://dx.doi.org/10.1364/AO.27.001643


View Full Text Article

Enhanced HTML    Acrobat PDF (1091 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

General characteristics and advantages of 2-D optical cellular processors are listed and discussed, with reference to the concepts of cellular automata, symbolic substitution, and neural nets. The role of optical interconnections and of quasilinear processing combining linear array operations and pointwise nonlinearities is highlighted. An architecture for optical implementation of cellular automata is introduced; it features high density 3-D optical shift-invariant interconnections and programmability of the interconnection pattern through adequate use of holographic connectors.

© 1988 Optical Society of America

History
Original Manuscript: August 7, 1987
Published: May 1, 1988

Citation
Jean Taboury, J. M. Wang, Pierre Chavel, F. Devos, and Patrick Garda, "Optical cellular processor architecture. 1 : Principles," Appl. Opt. 27, 1643-1650 (1988)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-27-9-1643


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. J. Taboury, J. M. Wang, Pierre Chavel, F. Devos, Patrick Garda, “Optical Cellular Processor Architecture. 2: Experiments,” to be submitted to Applied Optics.
  2. S. Wolfram, Theory and Application of Cellular Automata, (World Scientific, Singapore, 1986).
  3. N. H. Packard, S. Wolfram, “Two-Dimensional Cellular Automata,” J. Stat. Phys. 38, 901 (1985). [CrossRef]
  4. R. A. Athale, BDM Corp., McLean, VA; private communication.
  5. A. Huang, “Parallel Algorithms for Optical Digital Computers,” in Technical Digest, IEEE Tenth International Optical Computing Conference (1983), pp. 13–17.
  6. K. H. Brenner, A. Huang, N. Streibl, “Digital Optical Computing with Symbolic Substitution,” Appl. Opt. 25, 3054 (1986). [CrossRef] [PubMed]
  7. J. N. Mait, K. H. Brenner, “Optical Systems for Symbolic Substitution,” in Technical Digest of Topical Meeting on Optical Computing (Optical Society of America, Washington, DC, 1987), pp. 12–15.
  8. Y. Ichioka, J. Tanida, “Optical Parallel Logic Gaes Using a Shadowcasting System for Optical Digital Computing,” Proc. IEEE 72, 787 (1984). [CrossRef]
  9. H. O. Bartelt, A. W. Lohmann, E. E. Sicre, “Optical Logical Processing in Parallel with Theta Modulation,” J. Opt. Soc. Am. A 1, 944 (1984). [CrossRef]
  10. A. W. Lohmann, J. W. Weigelt, “Spatial Filtering Logic Based on Polarization,” Appl. Opt. 26, 131 (1987). [CrossRef] [PubMed]
  11. G. Eichmann, Y. Li, P. P. Ho, R. R. Alfano, “Digital Optical Isochronous Assay Processing,” Appl. Opt. 26, 2726 (1987). [CrossRef] [PubMed]
  12. D. Psaltis, N. Farhat, “Optical Information Processing Based on an Associative-Memory Model of Neural Nets with Thresholding and Feedback,” Opt. Lett. 10, 98 (1985). [CrossRef] [PubMed]
  13. J. J. Hopfield, “Neural Networks and Physical Systems with Emergent Collective Computational Abilities,” Proc. Natl. Acad. Sci. U.S.A. 79, 2554 (1982). [CrossRef] [PubMed]
  14. K. S. Huang, B. K. Jenkins, A. A. Sawchuk, “Binary Image Algebra and Digital Optical Cellular Image Processors,” in Technical Digest of Topical Meeting on Optical Computing (Optical Society of America, Washington, DC, 1987), pp. 20–23.
  15. J. R. Fienup, C. D. Leonard, “Holographic Optics for a Method-Filter Optical Processor,” Appl. Opt. 18, 631 (1979). [CrossRef] [PubMed]
  16. M. J. Murdocca, “Techniques for Parallel Numeric and Non-Numeric Algorithm Design in Digital Optics,” M.Sc. Thesis, Rutgers U. (1985).
  17. S. Levialdi, “On Shrinking of Binary Patterns,” Commun. ACM 15, 7 (1972). [CrossRef]
  18. A 6 × 6-ferroelectric liquid crystal shutter array, for example, is commercially available (Displaytech, Boulder, CO).
  19. B. K. Jenkins, P. Chavel, R. Forchheimer, A. A. Sawchuk, T. C. Strand, “Architectural Implications of a Digital Optical Processor,” Appl. Opt. 23, 3465 (1984). [CrossRef] [PubMed]
  20. A. Huang, “Architectural Considerations Involved in the Design of an Optical Digital Computer,” Proc. IEEE 72, 780 (1984). [CrossRef]
  21. K. H. Brenner, “New Implementation of Symbolic Substitution Logic,” Appl. Opt. 25, 3061 (1986). [CrossRef] [PubMed]
  22. B. K. Jenkins, A. A. Sawchuk, T. C. Strand, R. Forchheimer, B. H. Soffer, “Sequential Optical Logic Implementation,” Appl. Opt. 23, 3455 (1984). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited