OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Vol. 27, Iss. 9 — May. 1, 1988
  • pp: 1674–1681

Optical processing with residue LED/LD lookup tables

A. P. Goutzoulis, E. C. Malarkey, D. K. Davies, J. C. Bradley, and P. R. Beaudet  »View Author Affiliations


Applied Optics, Vol. 27, Issue 9, pp. 1674-1681 (1988)
http://dx.doi.org/10.1364/AO.27.001674


View Full Text Article

Enhanced HTML    Acrobat PDF (1405 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Position-coded modulo m lookup tables (LUTs) with gate complexities equal to m2, 2m, and 4 m are discussed. The design of practical miniaturized LUTs is described along with results obtained from a prototype 7 × 7 laser diode LUT. A factored m2 LUT technique that achieves large dynamic range is presented. Several LUT performance issues are also discussed.

© 1988 Optical Society of America

History
Original Manuscript: July 7, 1987
Published: May 1, 1988

Citation
A. P. Goutzoulis, E. C. Malarkey, D. K. Davies, J. C. Bradley, and P. R. Beaudet, "Optical processing with residue LED/LD lookup tables," Appl. Opt. 27, 1674-1681 (1988)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-27-9-1674


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. N. S. Szabo, R. I. Tanaka, Residue Arithmetic and Its Applications to Computer Technology (McGraw-Hill, New York, 1967).
  2. A. Huang, Y. Tsunoda, J. W. Goodman, S. Ishihara, “Optical Computation Using Residue Arithmetic,” Appl. Opt. 18, 149 (1979). [CrossRef] [PubMed]
  3. A. Tai, I. Cindrich, J. R. Fienup, C. C. Aleksoff, “Optical Residue Arithmetic Computer with Programmable Computation Modules,” Appl. Opt. 18, 2812 (1979). [CrossRef] [PubMed]
  4. D. D. Miller, J. N. Polky, “A Residue Number System Implementation of the LMS Algorithm Using Optical Waveguide Circuits,” IEEE Trans. Comput. C-32, 1013 (1983). [CrossRef]
  5. T. K. Gaylord, M. M. Mirsalehi, C. C. Guest, “Optical Digital Truth Table Look-Up Processing,” Opt. Eng. 24, 48 (1985). [CrossRef]
  6. D. Psaltis, D. Casasent, “Optical Residue Arithmetic: A Correlation Approach,” Appl. Opt. 18, 163 (1979). [CrossRef] [PubMed]
  7. S. F. Habiby, S. A. Collins, “Design of an Optical Residue Arithmetic Matrix Vector Multiplier Using Holographic Table Lookup,” in Technical Digest, Topical Meeting on Optical Computing (Optical Society of America, Washington, DC, 1985), paper TuD4.
  8. P. R. Beaudet, A. P. Goutzoulis, E. C. Malarkey, J. C. Bradley, “Residue Arithmetic Techniques for Optical Processing of Adaptive Phased Array Radars,” Appl. Opt. 25, 3097 (1986). [CrossRef] [PubMed]
  9. A. P. Goutzoulis, D. K. Davies, E. C. Malarkey, “Prototype Position-Coded Residue Look-Up Table Using Laser Diodes,” Opt. Commun. 61, 302 (1987). [CrossRef]
  10. C. Capps, R. Falk, T. Houk, “An Optical Arithmetic/Logic Unit Based on Residue Number Theory and Symbolic Substitution,” in Technical Digest, Topical Meeting on Optical Computing (Optical Society of America, Washington, DC, 1987), paper MD4.
  11. A. P. Goutzoulis, D. K. Davies, E. C. Malarkey, J. C. Bradley, P. R. Beaudet, “Residue Position-Coded Look-Up Table Processing,” in Technical Digest, Topical Meeting on Optical Computing (Optical Society of America, Washington, DC, 1987), paper MD3.
  12. P. R. Beaudet, “Optical Residue Arithmetic Computer,” Patent Disclosure AA86-008, Westinghouse Elec. Corp. (1985).
  13. D. A. Miller, D. S. Chemla, T. C. Damen, A. C. Gossard, W. Wiegmann, T. H. Wood, C. A. Burrus, “Novel Hybrid Optically Bistable Switch: The Quantum Well Self-Electro-Optic Effect Device,” Appl. Phys. Lett. 45, 13 (1984). [CrossRef]
  14. A. P. Goutzoulis, D. K. Davies, “On the Characteristics of Practical Optical Residue Look-Up Table Processors,” Proc. Soc. Photo-Opt. Instrum. Eng. 827, 226 (1987).
  15. E. C. Malarkey, P. R. Beaudet, J. C. Bradley, J. L. Davis, “Factored Look-Up Tables for Optical Residue Number System (RNS) Computations,” in Technical Digest, Topical Meeting on Optical Computing (Optical Society of America, Washington, DC, 1987), poster paper.
  16. A. P. Goutzoulis, “Complexity of Residue Position-Coded Lookup Table Array Processors,” Appl. Opt. 26, 4823 (1987). [CrossRef] [PubMed]
  17. H. K. Chung, G. V. Lee, K. L. Tan, K. Betz, P. J. Void, “High Speed and Ultra-Low Power GaAs MESFET 5 × 5 Multipliers,” in GaAs IC Symposium Technical Digest, Grenelefe, FL (1986), p. 15.
  18. W. R. Iversen, “A Faster GaAs Chip Nears Production,” Electronics36 (16Apr.1987).
  19. H. K. Chung, D. Arch, K. Betz, Honeywell Physical Sciences Center, Bloomington, MN; private communication.
  20. D. J. Schwab, Mayo Foundation, Special Purpose Processor Development Group, Rochester, MN; private communication.
  21. F. S. Lee et al., “A High Speed LSI GaAs 8 × 8 Bit Parallel Multiplier,” IEEE J. Solid State Circ. SC-17, 638 (1982). [CrossRef]
  22. M. Driver, M. Sopira, Westinghouse R&D Center, Pittsburgh, PA; private communication.
  23. A. Yariv, “Quantum-Well Lasers and Optoelectronics,” in Technical Digest, Conference on Lasers and Electro-Optics (Optical Society of America, Washington, DC, 1987), paper WC1.

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited