OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Vol. 27, Iss. 9 — May. 1, 1988
  • pp: 1727–1733

Optical interconnection network using polarization-based ferroelectric liquid crystal gates

Kristina M. Johnson, Marc R. Surette, and Joseph Shamir  »View Author Affiliations


Applied Optics, Vol. 27, Issue 9, pp. 1727-1733 (1988)
http://dx.doi.org/10.1364/AO.27.001727


View Full Text Article

Enhanced HTML    Acrobat PDF (1173 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

A polarization-based 4 × 4 optical interconnection network using surface stabilized ferroelectric liquid crystal (SSFLC) gates is demonstrated. The SSFLC gates are comprised of an SSFLC device sandwiched between two polarizing beam splitters. Optical crosstalk using these fast switching programmable devices can be limited to ~−20 dB/gate, which would allow 2-D interconnection networks to be fabricated with thirty-one input channels and 3-D interconnection networks with approximately 225 input channels.

© 1988 Optical Society of America

History
Original Manuscript: October 20, 1987
Published: May 1, 1988

Citation
Kristina M. Johnson, Marc R. Surette, and Joseph Shamir, "Optical interconnection network using polarization-based ferroelectric liquid crystal gates," Appl. Opt. 27, 1727-1733 (1988)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-27-9-1727


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. J. W. Goodman, F. I. Leonberger, S. Y. Kung, R. A. Athale, “Optical Interconnection for VLSI Systems,” Proc. IEEE 72, 850 (1984). [CrossRef]
  2. R. K. Kostuk, J. W. Goodman, L. Hesselink, “Optical Imaging Applied to Microelectronic Chip-to-Chip Interconnections,” Appl. Opt. 24, 2851 (1985). [CrossRef] [PubMed]
  3. A. A. Sawchuk, B. K. Jenkins, “Dynamic Optical Interconnections for Parallel Processing,” Proc. Soc. Photo-Opt. Instrum. Eng. 624, 143 (1986).
  4. A. W. Lohmann, “What Classical Optics can do for the Digital Optical Computer,” Appl. Opt. 25, 1543 (1986). [CrossRef] [PubMed]
  5. E. Marom, N. Konforti, “Dynamic Optical Interconnects,” Opt. Lett. 12, 539 (1987). [CrossRef] [PubMed]
  6. E. Marom, “Integrated Optics Switch Array Network Decomposition,” Opt. Commun. 58, 92 (1986). [CrossRef]
  7. J. Shamir, H. J. Caulfield, “High-Efficiency Rapidly Programmable Optical Interconnections,” Appl. Opt. 26, 1032 (1987). [CrossRef] [PubMed]
  8. J. Shamir, “Three-dimensional Optical Interconnection Gate Array,” Appl. Opt. 26, 3455 (1987). [CrossRef] [PubMed]
  9. J. Shamir, K. M. Johnson, “The Design of Three-Dimensional Optical Interconnection Networks Using Ferroelectric Liquid Crystals,” in Optics and the Information Age, Proceedings, Fourteenth ICO Congress, Quebec (Aug.1987), p. 541.
  10. A. A. Sawchuk, “Three-Dimensional Interconnection Network,” in Optics and the Information Age, Proceedings, Fourteenth ICO Congress, Quebec (Aug.1987), p. 547.
  11. E. Fredkin, T. Toffoli, “Conservative Logic,” Int. J. Theoret. Phys. 21, 219 (1982). [CrossRef]
  12. J. Shamir, H. J. Caulfield, W. J. Micelli, R. J. Seymour, “Optical Computing and the Fredkin Gates,” Appl. Opt. 25, 1604 (1986). [CrossRef] [PubMed]
  13. K. M. Johnson, M. A. Handschy, L. A. Pagano-Stauffer, “Optical Computing with Ferroelectric Liquid Crystals,” Opt. Eng. 26, 385 (1987). [CrossRef]
  14. V. A. Tsvetkov, N. A. Morozov, M. I. Ellison, “Picture Logic and Liquid Crystals,” Sov. J. Quantum Electron. 4, 989 (1975). [CrossRef]
  15. R. A. Soref, D. H. McMahon, “Total Switching of Unpolarized Fiber Light with a Four-Port Electro-Optic Liquid-Crystal Device,” Opt. Lett. 5, 147 (1980). [CrossRef] [PubMed]
  16. R. E. Wagner, J. Cheng, “Electrically Controlled Optical Switch for Multimode Fiber Applications,” Appl. Opt. 19, 2921 (1980). [CrossRef] [PubMed]
  17. S. Somekh, E. Garmire, A. Yariv, H. L. Garvin, R. G. Hunsperger, “Channel Optical Waveguides and Directional Couplers in GaAs—Imbedded and Ridged,” Appl. Opt. 13, 327 (1974). [CrossRef] [PubMed]
  18. M. Papuchon et al., “Electrically Switched Optical Directional Couplers: COBRA,” Appl. Phys. Lett. 27, 289 (1975). [CrossRef]
  19. S. K. Korotky et al., “Fully Connectorized High-Speed Ti: LiNbO3 Switch/Modulator for Time-Division Multiplexing and Data Encoding,” IEEE/OSA J. Lightwave Technol. LT-3, 1 (1985). [CrossRef]
  20. L. McCaughan, G. A. Bogert, “4 × 4 Ti:LiNbO3 Integrated-Optical Crossbar Switch Array,” Appl. Phys. Lett. 47, 348 (1985). [CrossRef]
  21. H. Terui, M. Kobayashi, “8 × 8 Optical Waveguide Switch using Liquid Crystals,” Proc. Soc. Photo-Opt. Instrum. Eng. 517, 267 (1984).
  22. N. A. Clark, M. A. Handschy, S. T. Lagerwall, “Ferroelectric Liquid Crystal Electro-Optics using the Surface Stabilized Structure,” Mol. Cryst. Liq. Cryst. 94, 213 (1983). [CrossRef]
  23. M. A. Handschy, N. A. Clark, “Structures and Responses of Ferroelectric Liquid Crystals in the Surface-Stabilized Geometry,” Ferroelectrics 59, 69 (1984). [CrossRef]
  24. N. A. Clark, S. T. Lagerwall, “Surface-Stabilized Ferroelectric Liquid Crystal Electro-Optics: New Multistate Structures and Devices,” Ferroelectrics 59, 25 (1984). [CrossRef]
  25. J. S. Patel, “Electro-Optics of Ferroelectric Liquid Crystals,” Opt. Eng. 26, 129 (1987). [CrossRef]
  26. N. A. Clark, S. T. Lagerwall, “Submicrosecond Bistable Electro-Optic Switching in Liquid Crystals,” Appl. Phys. Lett. 36, 899 (1980). [CrossRef]
  27. M. A. Handschy, K. M. Johnson, W. T. Cathey, L. A. Pagano-Stauffer, “Polarization-Base Optical Parallel Logic Gate Utilizing Ferroelectric Liquid Crystal,” Opt. Lett. 12, 611 (1987). [CrossRef] [PubMed]
  28. Chisso Corp., Fine Chemicals Division, 2 Kamariya, Kanazawa-ku, 35. Yokohama 236, Japan.
  29. M. A. Handschy, K. M. Johnson, G. Moddel, L. A. Pagano-Stauffer, “Electro-Optic Applications of Ferroelectric Liquid Crystals to Optical Computing,” to appear in Ferroelectrics (1988). [CrossRef]
  30. E. Kuester, D. C. Chang, F. Quazi, “Line Parameters of Coplanar Strips used as Electro-Optic Modulator Electrodes,” Report 84, U. Colorado (1986).
  31. G. Anderson et al., “Submicrosecond Switching in the Liquid-Crystal Smectic A Phase: the Soft-Mode Ferroelectric Effect,” Appl. Phys. Lett. 51, 31 (1987). [CrossRef]
  32. J. W. Goodman, A. R. Dias, L. M. Woody, “Fully Parallel, High-Speed Incoherent Optical Method for Performing Discrete Transforms,” Opt. Lett. 2, 1 (1978). [CrossRef] [PubMed]
  33. A. R. Dias, “Incoherent Optical Matrix-Vector Multiplier for Highspeed Data Processing,” Ph.D. Dissertation, Stanford U. (1980).
  34. J. W. Goodman, K. M. Johnson, “Incoherent Matrix-Vector Multiplier: Final Report L701-1” (June1981); “A Phase: the Soft-Mode Ferroelectric Effect,” Appl. Phys. Lett. 51, 31 (1987).
  35. K. M. Johnson, G. Moddel, S. Anderson, “Optical Logic Gates Using Ferroelectric Liquid Crystals,” J. Opt. Soc. Am. A 4(13), P42 (1987).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 
Fig. 4 Fig. 5
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited