OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Vol. 27, Iss. 9 — May. 1, 1988
  • pp: 1742–1751

Comparison between optical and electrical interconnects based on power and speed considerations

Michael R. Feldman, Sadik C. Esener, Clark C. Guest, and Sing H. Lee  »View Author Affiliations


Applied Optics, Vol. 27, Issue 9, pp. 1742-1751 (1988)
http://dx.doi.org/10.1364/AO.27.001742


View Full Text Article

Enhanced HTML    Acrobat PDF (1353 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Conditions are determined for which optical interconnects can transmit information at a higher data rate and consume less power than the equivalent electrical interconnections. The analysis is performed for free-space optical intrachip communication links. Effects of scaling circuit dimensions, presence of signal fan-out, and the use of light modulators as optical signal transmitters are also discussed.

© 1988 Optical Society of America

History
Original Manuscript: July 27, 1987
Published: May 1, 1988

Citation
Michael R. Feldman, Sadik C. Esener, Clark C. Guest, and Sing H. Lee, "Comparison between optical and electrical interconnects based on power and speed considerations," Appl. Opt. 27, 1742-1751 (1988)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-27-9-1742


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. J. W. Goodman, F. I. Leonberger, S. Y. Kung, R. A. Athale, “Optical Interconnections for VLSI Systems,” Proc. IEEE 72, 850 (1984). [CrossRef]
  2. K. C. Saraswat, F. Mohammadi, “Effect of Scaling of Interconnections on the time delay of VLSI Circuits,” IEEE Trans. Electron Devices ED-29, 645 (1982). [CrossRef]
  3. D. S. Gardner, J. D. Meindl, K. C. Saraswat, “Interconnection and Electromigration Scaling Theory,” IEEE Trans. Electron Devices ED-34, 633 (1987). [CrossRef]
  4. L. A. Bergman et al., “Holographic Optical Interconnects in VLSI,” Opt. Eng. 25, 1109 (1986). [CrossRef]
  5. W. H. Wu et al., “Implementation of Optical Interconnections for VLSI,” IEEE Trans Electron Devices ED-34, 706 (1987). [CrossRef]
  6. R. K. Kostuk, J. W. Goodman, L. Hesselink, “Optical Imaging Applied to Microelectric Chip-to-Chip Interconnections,” Appl. Opt. 24, 2851 (1985). [CrossRef] [PubMed]
  7. R. Barakat, J. Reif, “Lower Bounds on the Computational Efficiency of Optical Computing Systems,” Appl. Opt. 26, 1015 (1987). [CrossRef] [PubMed]
  8. S. Sakai, H. Shiraishi, M. Umeno, “AlGaAs/GaAs Stripe Laser Diodes Fabricated on Si Substrates by MOCVD,” IEEE J. Quantum Electron. QE-23, 1080 (1987). [CrossRef]
  9. S. Sakai, X. W. Hu, M. Umeno, “AlGaAs/GaAs Transverse Junction Stripe Lasers Fabricated on Si Substrates Using Superlattice Intermediate Layers by MOCVD,” IEEE J. Quantum Electron. QE-23, 1085 (1987). [CrossRef]
  10. C. Mead, L. Conway, Introduction to VLSI Systems, (Addison-Wesley, Menlo Park, CA1980), pp. 11–12.
  11. T. Quarles, A. R. Newton, D. O. Pederson, A. Sangiovanni-Vincentelli, SPICE Version 3A7 User’s Guide (U. California, Berkeley, 23Sept.1986).
  12. L. A. Glasser, D. W. Dobberpuhl, The Design and Analysis of VLSI Circuits, (Addison-Wesley, Menlo Park, CA, 1985), pp. 139–141.
  13. “The MOSIS System (What It is and How to Use It),” Report ISI/TM-84-128, Information Sciences Institute, U. Southern California, Marina del Rey, CA 90292 (Mar.1984).
  14. P. R. Haugen, S. Rychnovsky, A. Husain, L. D. Hutcheson, “Optical Interconnects for High Speed Computing,” Opt. Eng. 25, 1076 (1986). [CrossRef]
  15. T. Shibutani et al., “A Novel High-Power Laser Structure with Current-Blocked Regions Near Cavity Facets,” IEEE J. Quantum Electron. QE-23, 760 (1987). [CrossRef]
  16. Ref. 12, pp. 135–136.
  17. Ref. 10, pp. 341–342.
  18. P. L. Derry, A. Yariv, “Ultralow-Threshold Graded-Index Separate-Confinement Single Quantum Well Buried Heterostructure (Al,Ga)As Lasers with High Reflectivity Coatings,” Appl. Phys. Lett. 50, 1773 (1987). [CrossRef]
  19. R. E. Brooks, “Micromechanical Light Modulators on Silicon,” Opt. Eng. 24, 101 (1985). [CrossRef]
  20. E. Bradley, P. K. L. Yu, “Proposed Modulator for Global VLSI Optical Interconnect Network,” Jpn. J. Appl. Phys. 26, L971 (1987). [CrossRef]
  21. G. D. Boyd, D. A. B. Miller, D. S. Chemla, S. L. McCall, A. C. Gossard, J. H. English, “Multiple Quantum Well Reflection Modulator,” Appl. Phys. Lett. 50, 1119 (1987). [CrossRef]
  22. S. H. Lee, S. C. Esener, M. A. Title, T. J. Drabik, “Two-Dimensional Silicon/PLZT Spatial Light Modulators: Design Considerations and Technology,” Opt. Eng. 25, 250 (1986). [CrossRef]
  23. D. A. B. Miller, D. S. Chemla, T. C. Damen, T. H. Wood, C. A. Burrus, A. C. Gossard, W. Wiegmann, “The Quantum Well Self-Electrooptic Effect Device: Optoelectronic Bistability and Oscillation, and Self-Linearized Modulation,” IEEE J. Quantum Electron. QE-21, 1462 (1985). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited