OSA's Digital Library

Applied Optics

Applied Optics


  • Vol. 27, Iss. 9 — May. 1, 1988
  • pp: 1752–1759

Adaptive optical networks using photorefractive crystals

Demetri Psaltis, David Brady, and Kelvin Wagner  »View Author Affiliations

Applied Optics, Vol. 27, Issue 9, pp. 1752-1759 (1988)

View Full Text Article

Enhanced HTML    Acrobat PDF (1126 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



The capabilities of photorefractive crystals as media for holographic interconnections in neural networks are examined. Limitations on the density of interconnections and the number of holographic associations which can be stored in photorefractive crystals are derived. Optical architectures for implementing various neural schemes are described. Experimental results are presented for one of these architectures.

© 1988 Optical Society of America

Original Manuscript: July 24, 1987
Published: May 1, 1988

Demetri Psaltis, David Brady, and Kelvin Wagner, "Adaptive optical networks using photorefractive crystals," Appl. Opt. 27, 1752-1759 (1988)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. Y. S. Abu-Mostafa, D. Psaltis, “Optical Neural Computers,” Sci. Am. 256, 88 (1987). [CrossRef]
  2. D. Psaltis, J. Yu, X. G. Gu, H. Lee, “Optical Neural Nets Implemented with Volume Holograms,” in Technical Digest of Topical Meeting on Optical Computing (Optical Society of America, Washington, DC, 1987).
  3. D. Psaltis, X. G. Gu, H. Lee, J. Yu, “Optical Interconnections Implemented with Volume Holograms,” to be published.
  4. P. J. van Heerden, “Theory of Optical Information Storage in Solids,” Appl. Opt. 2, 393 (1963). [CrossRef]
  5. M. Cohen, “Design of a New Medium for Volume Holographic Information Processing,” Appl. Opt. 25, 2288 (1986). [CrossRef] [PubMed]
  6. K. Wagner, D. Psaltis, “Multilayer Optical Learning Networks,” Proc. Soc. Photo-Opt. Instrum. Eng. 752, 16 (1987).
  7. K. Wagner, D. Psaltis, “Nonlinear Etalons in Adaptive Optical Neural Computers,” presented at IEEE First Annual International Conference on Neural Networks, San Diego, 21–24 June 1987.
  8. K. Wagner, D. Psaltis, “Multilayer Optical Learning Networks,” Appl. Opt. 26, 5061 (1987). [CrossRef] [PubMed]
  9. D. Z. Anderson, “Adaptable Interconnects for Optical Neuromorphs: Demonstration of a Photorefractive Projection Operator,” in Proceedings, International Conference on Neural Networks, San Diego (June1987).
  10. T. Kohonen, Self-Organization and Associative Memory (Springer-Verlag, Berlin, 1984).
  11. J. J. Hopfield, “Neural Networks and Physical Systems with Emergent Collective Computational Abilities,” Proc. Natl. Acad. Sci. U.S.A. 79, 2554 (1982). [CrossRef] [PubMed]
  12. S. S. Venkatesh, D. Psaltis, “Information Storage and Retrieval in Two Associative Nets,” presented at Conference on Neural Network Models for Computing, Santa Barbara, CA (April 1985).
  13. L. Personnaz, I. Guyon, G. Dreyfus, “Information Storage and Retrieval in Spin-Glass Like Neural Networks,” J. Phys. Lett. 46, L359 (1985). [CrossRef]
  14. D. Psaltis, C. Park, “Nonlinear Discriminant Functions and Associative Memories,” APS Conf. Proc. 151, 370 (1986). [CrossRef]
  15. T. Maxwell, C. L. Giles, Y. C. Lee, H. H. Chen, “Nonlinear Dynamics of Artificial Neural Systems,” APS Conf. Proc. 151, 299 (1986). [CrossRef]
  16. E. B. Baum, “On the Capabilities of Multilayer Perceptrons,” to be published.
  17. D. Psaltis, N. H. Farhat, “Optical Information Processing Based on an Associative Memory Model of Neural Nets with Thresholding and Feedback,” Opt. Lett. 10, 98 (1985). [CrossRef] [PubMed]
  18. Y. Owechko, G. J. Dunning, E. Marom, B. H. Soffer, “Holographic Associative Memory with Nonlinearities in the Correlation Domain,” Appl. Opt. 26, 1900 (1987). [CrossRef] [PubMed]
  19. B. Kosko, C. Guest, “Optical Bidirectional Associative Memories,” Proc. Soc. Photo-Opt. Instrum. Eng. 758, (1987).
  20. R. A. Athale, H. H. Szu, C. B. Friedlander, “Optical Implementation of Associative Memory with Controlled Nonlinearity in the Correlation Domain,” Opt. Lett. 11, 482 (1986). [CrossRef] [PubMed]
  21. F. Rosenblatt, Principles of Neurodynamics: Perceptron and the Theory of Brain Mechanisms (Spartan Books, Washington, DC, 1961).
  22. B. Widrow, M. E. Hoff, “Adaptive Switching Circuits,” IRE WESCON Conv. Rec. 4, 96 (1960).
  23. D. E. Rumelhart, J. L. McClelland, Eds., Parallel Distributed Processing, Vol. 1 (MIT Press, Cambridge, MA, 1986).
  24. D. B. Parker, “Learning Logic,” Invention Report S81-64, File 1, Office of Technology Licensing, Stanford U. (Oct.1982).
  25. J. D. Denker, Ed., “Neural Networks for Computing,” APS Conf. Proc.151 (1986). [CrossRef]
  26. A. D. Fisher, R. C. Fukuda, J. N. Lee, “Implementations of Adaptive Associative Optical Computing Elements,” Proc. Soc. Photo-Opt. Instrum. Eng. 625, 196 (1986).
  27. K. Fukushima, “A Hierarchical Neural Network Model for Associative Memory,” Biol. Cybern. 50, 105 (1984). [CrossRef] [PubMed]
  28. S. Grossberg, Studies of Mind and Brain (Reidel, Boston, 1982). [CrossRef]
  29. N. V. Kuktarev, V. B. Markov, S. G. Odulov, M. S. Soskin, V. L. Vinetskii, “Holographic Storage in Electrooptic Crystals. I: Steady State,” Ferroelectrics 22, 949 (1979). [CrossRef]
  30. J. W. Goodman, “Fan-In and Fan-Out with Optical Interconnections,” Opt. Acta 32, 1489 (1985). [CrossRef]
  31. D. L. Staebler, W. Phillips, “Fe-Doped LiNbO3 for Read-Write Applications,” Appl. Opt. 13, 788 (1974). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited