OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Vol. 28, Iss. 1 — Jan. 1, 1989
  • pp: 33–36

Use of a rapid thermal annealing system to initiate indiffusion for fabrication of Ti:LiNbO3 optical channel waveguides

Daryl C. Cromer, Gregory N. De Brabander, Joseph T. Boyd, Howard E. Jackson, and S. Sriram  »View Author Affiliations


Applied Optics, Vol. 28, Issue 1, pp. 33-36 (1989)
http://dx.doi.org/10.1364/AO.28.000033


View Full Text Article

Enhanced HTML    Acrobat PDF (673 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

A rapid thermal annealing (RTA) system has been used to initiate indiffusion of Ti into LiNbO3 for fabrication of optical channel waveguides. Four separate processes are investigated, each with different RTA temperature vs time variations followed by furnace heating. The sample processed with a fast initial ramp of temperature vs time to 875°C yielded the lowest waveguide propagation loss of 1 dB/cm at a wavelength of 632.8 nm, compared with samples processed with other RTA variations and with a sample undergoing only furnace processing. Use of a dry O2 ambient during RTA resulted in a smoother waveguide surface with no outdiffusion, when compared with use of a wet O2 ambient.

© 1989 Optical Society of America

History
Original Manuscript: May 13, 1988
Published: January 1, 1989

Citation
Daryl C. Cromer, Gregory N. De Brabander, Joseph T. Boyd, Howard E. Jackson, and S. Sriram, "Use of a rapid thermal annealing system to initiate indiffusion for fabrication of Ti:LiNbO3 optical channel waveguides," Appl. Opt. 28, 33-36 (1989)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-28-1-33


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. See, for example, S. R. Wilson, R. Powell, D. E. Davies, Eds., Rapid Thermal Processing of Electronic Materials, MRS Proceedings, Vol. 92 (1987).
  2. R. V. Schmidt, I. P. Kaminow, “Metal-Diffused Optical Waveguides In LiNbO3,” Appl. Phys. Lett. 25, 458 (1974). [CrossRef]
  3. A. Loni, R. M. DeLaRue, J. M. Winfield, “Proton-Exchanged, Lithium Niobate Planar-Optical Waveguides: Chemical and Optical Properties and Room-Temperature Hydrogen Isotopic Exchange Reactions,” J. Appl. Phys 61, 64 (1987). [CrossRef]
  4. R. Chen, C. S. Tsai, “Thermally Annealed Single-Mode Proton-Exchanged Channel-Waveguide Cutoff Modulator,” Opt. Lett. 11, 546 (1986). [CrossRef] [PubMed]
  5. R. A. Becker, “Comparison of Guided-Wave Interferometric Modulators Fabricated on LiNbO3 via Ti Indiffusion and Proton Exchange,” Appl. Phys. Lett. 43, 131 (1983). [CrossRef]
  6. A. L. Dawar, S. M. Al-Shukri, R. M. De La Rue, A. C. G. Nutt, G. Stewart, “Fabrication and Characterization of Titanium-Indiffused Proton-Exchanged Optical Waveguides in Y-LiNbO3,” Appl Opt. 25, 1495 (1986). [CrossRef] [PubMed]
  7. D. Y. Zang, C. S. Tsai, “Titanium-Indiffused Proton-Ex-changed Waveguide Lenses in LiNbO3 for Optical Information Processing,” Appl. Opt. 25, 2264 (1986). [CrossRef] [PubMed]
  8. G. J. Griffiths, R. J. Esdaile, “Analysis of Titanium Diffused Planar Optical Waveguides in Lithium Niobate,” IEEE J. Quantum Electron. QE-20, 149 (1984). [CrossRef]
  9. O. Eknoyan, A. S. Greenblatt, W. K. Burns, C. H. Bulmer, “Characterization of Ti:LiNbO3 Deep Waveguides Diffused in Dry and Wet Oxygen Ambient,” Appl. Opt. 25, 737 (1986). [CrossRef] [PubMed]
  10. G. L. Destefanis et al., “The Formation of Waveguides and Modulators in LiNbO3 by Ion Implantation,” J. Appl. Phys. 50, 7898 (1979). [CrossRef]
  11. S. A. M. Al-Chalabi, “Low-Loss He+ Implanted LiNbO3 Waveguides Produced by Transient Annealing,” Appl. Phys. Lett. 47, 564 (1985). [CrossRef]
  12. B. L. Weiss, J. L. Flint, “The Characteristics of Optical Waveguide Fabricated in Y and Z cut LiNbO3 by He+ Implantation,” J. Appl. Phys. 60, 464 (1986). [CrossRef]
  13. B. R. Appleton, G. M. Beardsley, G. C. Farlow, W. H. Christie, P. R. Ashley, “Ion beam Processing of LiNbO3,” J. Mater. Res. 1, 104 (1986); C. H. Buchal, P. R. Ashley, B. R. Appleton, “Solid Phase Epitaxy of Ion-Implanted LiNbO3 for Optical Waveguide Fabrication,” J. Mater. Res. 2, 222 (1987). [CrossRef]
  14. J. L. Jackel, V. Ramaswamy, S. P. Lyman, “Elimination of Out-Diffused Surface Guiding in Titanium In-Diffused LiNbO3,” Appl. Phys. Lett. 38, 509 (1981). [CrossRef]
  15. Amphenol Data Sheet, Amphenol Fiber Optics Products, 1925 Ohio St., Lisle, IL 80532.
  16. M. N. Armenise, C. Canali, M. DeSario, A. Carnera, P. Mazzoldi, G. Celotti, “Characterization of (Ti0.65Nb0.35)O2 Compound as Source for Ti Diffusion During Ti:LiNbO3 Optical Waveguide Fabrication,” J. Appl. Phys. 54, 62 (1983). [CrossRef]
  17. A. Carnera, Optical Waveguides in LiNbO3 Produced by Ti In-Diffusion, Ion Exchange and Ion Implantation in Electro-Optic and Photorefractive Materials, Springer Proceedings in Physics 18, 179, Edited by P. Gunter (Springer-Verlag, New York, 1987).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited