OSA's Digital Library

Applied Optics

Applied Optics


  • Vol. 28, Iss. 11 — Jun. 1, 1989
  • pp: 2075–2086

Accurate method to determine the eigenstates of polarization in gyrotropic media

Theresa A. Maldonado and Thomas K. Gaylord  »View Author Affiliations

Applied Optics, Vol. 28, Issue 11, pp. 2075-2086 (1989)

View Full Text Article

Enhanced HTML    Acrobat PDF (1462 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Many practical modulator materials include combinations of electrooptically induced birefringence, optical activity, and/or Faraday rotation. Thus, there is a need for a procedure to design and analyze devices fabricated with materials exhibiting any or all of these effects. In this paper a simple procedure employing an extension of the general Jacobi method is introduced for determining the properties of the two allowed elliptical eigenpolarizations for an arbitrary direction of propagation and for the principal indices and axes of a general lossless, electrooptic, and gyrotropic medium. The procedure uses an iterative application of unitary transformations to diagonalize the Hermitian impermeability tensor. A complex polarization variable is defined from elements of the unitary transformation matrix to determine the ellipticity, azimuth angle, relative amplitude and phase, and handedness of the two orthogonal elliptical polarizations. The phase velocity indices of refraction are readily calculated with simple derived expressions. The procedure is numerically stable and accurate for any crystal class, external field direction, and direction of propagation.

© 1989 Optical Society of America

Original Manuscript: September 20, 1988
Published: June 1, 1989

Theresa A. Maldonado and Thomas K. Gaylord, "Accurate method to determine the eigenstates of polarization in gyrotropic media," Appl. Opt. 28, 2075-2086 (1989)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. T. A. Maldonado, T. K. Gaylord, “Electrooptic Effect Calculations: Simplified Procedure for Arbitrary Cases,” Appl. Opt. 27, 5051–5066 (1988). [CrossRef] [PubMed]
  2. A. Yariv, “Coupled-Mode Theory for Guided-Wave Optics,” IEEE J. Quantum Electron. QE-9, 919–933 (1973). [CrossRef]
  3. A. Yariv, J. F. Lotspeich, “Coupled-Mode Analysis of Light Propagation in Optically Active Crystals,” J. Opt. Soc. Am. 72, 273–277 (1982). [CrossRef]
  4. P. Van Den Keybus, W. Grevendonk, “Comparison of Optical Activity and Faraday Rotation in Crystalline SiO2,” Phys. Status Solidi B 136, 651–659 (1986). [CrossRef]
  5. M. P. Silverman, “Effects of Circular Birefringence on Light Propagation and Reflection,” Am. J. Phys. 54, 69–76 (1986). [CrossRef]
  6. S. Mallick, D. Rouede, A. G. Apostolidis, “Efficiency and Polarization Characteristics of Photorefractive Diffraction in a Bi12SiO20 Crystal,” J. Opt. Soc. Am. B 4, 1247–1259 (1987). [CrossRef]
  7. A. Marrakchi, R. V. Johnson, A. R. Tanguay, “Polarization Properties of Photorefractive Diffraction in Electrooptic and Optically Active Sillenite Crystals (Bragg Regime),” J. Opt. Soc. Am. B 3, 321–336 (1986). [CrossRef]
  8. O. S. Eritsyan, “Optical Problems in the Electrodynamics of Gyrotropic Media,” Sov. Phys. Usp. 25, 919–935 (1983). [CrossRef]
  9. E. U. Condon, “Theories of Optical Rotatory Power,” Rev. Mod. Phys. 9, 432–457 (1937). [CrossRef]
  10. D. Eimerl, “Quantum Electrodynamics of Optical Activity in Birefringent Crystals,” J. Opt. Soc. Am. B 5, 1453–1461 (1988). [CrossRef]
  11. R. M. Hornreich, S. Shtrikman, “Theory of Gyrotropic Birefringence,” Phys. Rev. 171, 1065–1074 (1968). [CrossRef]
  12. M. Born, E. Wolf, Principles of Optics (Pergamon, New York, 1959).
  13. A. Yariv, P. Yeh, Optical Waves in Crystals (Wiley, New York, 1983).
  14. L. D. Landau, E. M. Lifshitz, Electrodynamics of Continuous Media (Pergamon, London, 1960).
  15. J. F. Nye, Physical Properties of Crystals (Oxford U.P., London, 1957).
  16. V. M. Agranovich, V. L. Ginzburg, Crystal Optics with Spatial Dispersion, and Excitons (Springer-Verlag, New York, 1984).
  17. A. V. Shubnikov, Principles of Optical Crystallography (Consultants Bureau, New York, 1960).
  18. V. M. Agranovich, V. L. Ginzburg, “Phenomenological Electrodynamics of Gyrotropic Media,” Sov. Phys. JETP 36, 440–443 (1973).
  19. B. V. Bokut, A. N. Serdyukov, “On the Phenomenological Theory of Natural Optical Activity,” Sov. Phys. JETP 34, 962–964 (1972).
  20. A. Yariv, Optical Electronics (Holt, Rinehart, & Winston, New York, 1976).
  21. O. G. Vlokh, “Electrogyration Properties of Crystals,” Ferroelectrics 75, 119–137 (1987). [CrossRef]
  22. J. Kobayashi, T. Asahi, S. Takahashi, “Simultaneous Measurements of Electrogyration and Electrooptic Effects of α-quartz,” Ferroelectrics 75, 139–152 (1987). [CrossRef]
  23. F. Vachss, L. Hesselink, “Measurement of the Electrogyratory and Electro-Optic Effects in BSO and BGO,” Opt. Commun. 62, 159–165 (1987). [CrossRef]
  24. F. A. Hopf, G. I. Stegeman, Applied Classical Electrodynamics, Vol. 1: Linear Optics (Wiley, New York, 1985).
  25. M. J. Freiser, “A Survey of Magnetooptic Effects,” IEEE Trans. Magn. MAG-4, 152–161 (1968). [CrossRef]
  26. P. S. Pershan, “Magneto-Optical Effects,” J. Appl. Phys. 38, 1482–1490 (1967). [CrossRef]
  27. J. F. Dillon, “Magnetooptics and Its Uses,” J. Magn. and Magn. Mater. 31–34, 1–9 (1983). [CrossRef]
  28. J. H. Wilkinson, The Algebraic Eigenvalue Problem (Oxford U.P., London, 1965).
  29. P. Hlawiczka, Gyrotropic Waveguides (Academic, New York, 1981).
  30. IMSL Library Reference Manual (International Mathematical & Statistical Libraries, Inc., Houston, TX, 1980), ed. 9.2.
  31. R. M. A. Azzam, N. M. Bashara, Ellipsometry and Polarized Light (Elsevier Science, New York, 1987).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited