OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Vol. 28, Iss. 11 — Jun. 1, 1989
  • pp: 2111–2118

Measurements of argon broadened Lorentz width and pressure-induced line shift coefficients in the ν4 band of 12CH4

Curtis P. Rinsland, V. Malathy Devi, Mary Ann H. Smith, and D. Chris Benner  »View Author Affiliations


Applied Optics, Vol. 28, Issue 11, pp. 2111-2118 (1989)
http://dx.doi.org/10.1364/AO.28.002111


View Full Text Article

Enhanced HTML    Acrobat PDF (979 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Room temperature argon broadened halfwidth and pressure-induced line shift coefficients have been determined for 118 transitions in the ν4 band of 12CH4 from analysis of high resolution laboratory absorption spectra recorded with the McMath Fourier transform spectrometer operated on Kitt Peak by the National Solar Observatory. Transitions up to J″ = 12 have been measured using a nonlinear least-squares spectral fitting procedure. The variation of the measured halfwidth coefficients with symmetry type and rotational quantum number is very similar to that measured previously for N2 and air broadening, but the absolute values of the argon broadening coefficients are all smaller. On average, the ratio of the argon broadened halfwidth coefficient to the corresponding N2 broadened halfwidth coefficient is 0.877 ± 0.017 (2σ). More than 95% of the pressure-induced shifts are negative with values ranging from −0.0081 to +0.0055 cm−1 atm−1. The pressure shifts in argon are nearly equal to corresponding values measured previously in N2 and air.

© 1989 Optical Society of America

History
Original Manuscript: December 2, 1988
Published: June 1, 1989

Citation
Curtis P. Rinsland, V. Malathy Devi, Mary Ann H. Smith, and D. Chris Benner, "Measurements of argon broadened Lorentz width and pressure-induced line shift coefficients in the ν4 band of 12CH4," Appl. Opt. 28, 2111-2118 (1989)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-28-11-2111


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. V. Malathy Devi, C. P. Rinsland, M. A. H. Smith, D. C. Benner, “Measurements of 12CH4ν4 Band Halfwidths Using a Tunable Diode Laser System and a Fourier Transform Spectrometer,” Appl. Opt. 24, 2788–2791 (1985). [CrossRef] [PubMed]
  2. V. Malathy Devi, C. P. Rinsland, M. A. H. Smith, D. C. Benner, “Tunable Diode Laser Measurements of Widths of Air-and Nitrogen-Broadened Lines in the ν4 Band of 13CH4,” Appl. Opt. 24, 3321–3322 (1985). [CrossRef] [PubMed]
  3. C. P. Rinsland, V. Malathy Devi, M. A. H. Smith, D. C. Benner, “Measurements of Air-Broadened and Nitrogen-Broadened Lorentz Width Coefficients and Pressure Shift Coefficients in the ν4 and ν2 Bands of 12CH4,” Appl. Opt. 27, 631–651 (1988). [CrossRef] [PubMed]
  4. V. Malathy Devi, C. P. Rinsland, M. A. H. Smith, D. C. Benner, “Air-Broadened Lorentz Halfwidths and Pressure-Induced Line Shifts in the ν4 Band of 13CH4,” Appl. Opt. 27, 2296–2308 (1988). [CrossRef]
  5. D. M. Hunten, M. G. Tomasko, F. M. Flasar, R. E. Samuelson, D. F. Strobel, D. J. Stevenson, “Titan,” in Saturn, T. Gehrels, M. S. Matthews, Eds. (U. Arizona Press, Tucson, 1984), pp. 671–759.
  6. C. R. Webster, S. Sander, R. Beer, J. Ballard, “Titan Probe Diode Laser Spectrometer,” in Proceedings, Atmospheric Spectroscopy Applications Workshop, Rutherford Appleton Laboratory, 1–3 Sept. 1987, J. Ballard, Ed., Rutherford Appleton Laboratory Publ. RAL-88-009 (1987), paper 12.5.
  7. C. R. Webster, “Stratospheric Composition Measurements of Earth and Titan Using High-Resolution Tunable Diode Laser Spectroscopy,” J. Quant. Spectrosc. Radiat. Transfer, in press.
  8. C. P. Rinsland, D. C. Benner, D. J. Richardson, R. A. Toth, “Absolute Intensity Measurements of the (1110)II ← 0000 Band of 12C16O2 at 5.2 μm,” Appl. Opt. 22, 3805–3809 (1983). [CrossRef] [PubMed]
  9. L. R. Brown, R. A. Toth, “Comparison of the Frequencies of NH3, CO2, H2O, N2O, CO, and CH4 as Infrared Calibration Standards,” J. Opt. Soc. Am. B 2, 842–856 (1985). [CrossRef]
  10. P. Varanasi, L. A. Pugh, B. R. P. Bangaru, “Measurement of Multiplet Intensities and Noble Gas-Broadened Line Widths in the ν4-Fundamental of Methane,” J. Quant. Spectrosc. Radiat. Transfer 14, 829–838 (1974). [CrossRef]
  11. P. Varanasi, S. Chudamani, “Measurements of Collision-Broadened Line Widths in the ν4-Fundamental Band of 12CH4 at Low Temperatures,” J. Quant. Spectrosc. Radiat. Transfer, in press.
  12. L. S. Rothman et al., “The HITRAN Database: 1986 Edition,” Appl. Opt. 26, 4058–4097 (1987). [CrossRef] [PubMed]
  13. P. Varanasi, S. Chudamani, “Intensity and Line Width Measurements in the ν4-Fundamental Band of 13CH4,” J. Geophys. Res., in press.
  14. K. Fox, D. E. Jennings, E. A. Stern, R. Hubbard, “Measurements of Argon-, Helium-, Hydrogen-, and Nitrogen-Broadened Widths of Methane Lines near 9000 cm−1,” J. Quant. Spectrosc. Radiat. Transfer 39, 473–476 (1988). [CrossRef]
  15. H. J. Gerritsen, M. E. Heller, “High-Resolution Tuned-Laser Spectroscope,” Appl. Opt. Suppl. 2, 73–77 (1965).
  16. M. A. H. Smith, C. P. Rinsland, B. Fridovich, K. Narahari Rao, “Intensities and Collision Broadening Parameters from Infrared Spectra,” in Molecular Spectroscopy: Modern Research, Vol. 3, K. Narahari Rao, Ed. (Academic, Orlando, FL, 1985), Chap. 3.
  17. G. D. T. Tejwani, P. Varanasi, K. Fox, “Collision-Broadened Linewidths of Tetrahedral Molecules-II. Computations for CH4 Lines Broadened by N2, O2, He, Ne and Ar,” J. Quant. Spectrosc. Radiat. Transfer 15, 243–254 (1975). [CrossRef]
  18. P. Varanasi, “Collision-Broadened Line Widths of Tetrahedral Molecules—I. Theoretical Formulation,” J. Quant. Spectrosc. Radiat. Transfer 14, 995–1008 (1974). [CrossRef]
  19. P. Varanasi, “Infrared Line Widths at Planetary Atmospheric Temperatures,” J. Quant. Spectrosc. Radiat. Transfer 39, 13–25 (1988). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 
Fig. 4
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited