OSA's Digital Library

Applied Optics

Applied Optics


  • Vol. 28, Iss. 13 — Jul. 1, 1989
  • pp: 2466–2482

Thin film retardation plate by oblique deposition

Tomoyoshi Motohiro and Y. Taga  »View Author Affiliations

Applied Optics, Vol. 28, Issue 13, pp. 2466-2482 (1989)

View Full Text Article

Enhanced HTML    Acrobat PDF (4249 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



The birefringent property of obliquely deposited metal oxides was studied with a view to applying it to optical retardation plates. By finding favorable conditions to form transparent films of large retardation and low opacity, we developed homogeneous quarterwave plates with a bilayered structure 60 × 250 mm in size and ~3 μm. thick on glass substrates. These retardation plates can work with a normally incident light based on form birefringence caused by the characteristic anisotropic microstructure inside the film. They showed promising optical properties which can compete with the conventional types of retardation plate.

© 1989 Optical Society of America

Original Manuscript: October 28, 1988
Published: July 1, 1989

Tomoyoshi Motohiro and Y. Taga, "Thin film retardation plate by oblique deposition," Appl. Opt. 28, 2466-2482 (1989)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. J. M. Bennett, H. E. Bennett, “Polarization,” in Handbook of Optics, W. G. Driscoll, W. Vaughan, Eds. McGraw-Hill, New York, 1978), p. 10–108.
  2. D. C. Flanders, “Submicrometer Periodicity Gratings as Artificial Dielectrics,” Appl. Phys. Lett.42, 492–494 (1983).
  3. R. C. Enger, S. K. Case, “Optical Elements with Ultrahigh Spatial-Frequency Surface Corrugations,” Appl. Opt. 22, 3220–3228 (1983). [CrossRef] [PubMed]
  4. M. Born, E. Wolf, Principles of Optics (Pergamon, Oxford, 1965), p. 705.
  5. A. Kundt, “Ueber Doppelbrechung des Lichtes in Metallschichten, welche durch Zerstauben einer Kathode hergestellt sind,” Wied. Ann. 27, 59–71 (1886). [CrossRef]
  6. C. Bergholm, “Uber Doppelbrechung in Kathodenzerstaubten Metallshichten” Ann. Phys. 43, 1–23 (1914).
  7. M. Ch. Maurain, “Dichroisme, birefringence et conductibilite de lames metalliques minces obtenues par pulverisation cathodique,” C. R. Acad. Sci. Ser. B B142, 870–872 (1960).
  8. E. Neugebauer, C. V. Fragstein, “Doppelbrechung schrag aufgedampfer Schichten,” Optik 29, 150–161 (1968).
  9. W. A. Crossland, “Birefringence in Silicon Monoxides Films Used for Aligning Liquid Crystal Layers,” Appl. Phys. Lett. 26, 598–600 (1975). [CrossRef]
  10. H. A. Macleod, “Structure-Related Optical Properties of Thin Films,” J. Vac. Sci. Technol. A 4, 418–422 (1986). [CrossRef]
  11. L. Pensak, “High-Voltage Photovoltaic Effect,” Phys. Rev. Lett. 109, 601–601 (1958).
  12. B. Goldstein, “Properties of Photovoltaic Films of CdTe,” Phys. Rev. Lett. 109, 601–603 (1958).
  13. B. Goldstein, L. Pensak, “High-Voltage Photovoltaic Effect,” J. Appl. Phys. 30, 155–161 (1959). [CrossRef]
  14. D. O. Smith, “Anisotropy in Permalloy Films,” J. Appl. Phys. 30, 264S–265S (1959). [CrossRef]
  15. J. D. Finegan, R. W. Hoffman, “Stress Anisotropy in Evaporated Iron Films,” J. Appl. Phys. 30, 597–598 (1959). [CrossRef]
  16. T. G. Knorr, R. W. Hoffman, “Dependence of Geometric Magnetic Anisotropy in Thin Iron Films,” Phys. Rev. 113, 1039–1046 (1959). [CrossRef]
  17. D. K. Pandya, A. C. Rastogi, K. L. Chopra, “Obliquely Deposited Amorphous Ge Films. I. Growth and Structure,” J. Appl. Phys. 46, 2966–2975 (1975). [CrossRef]
  18. M. S. Cohen, “Anisotropy in Permalloy Films Evaporated at Grazing Incidence,” J. Appl. Phys. 32, 87S–88S (1961). [CrossRef]
  19. J. M. Pollack, W. E. Haas, J. E. Adams, “Topology of Obliquely Coated Silicon Monoxide Layers,” J. Appl. Phys. 48, 831–833 (1977). [CrossRef]
  20. J. W. Swaine, R. C. Plumb, “Specific Surface Area of Evaporated Aluminum,” J. Appl. Phys. 33, 2378–2382 (1962). [CrossRef]
  21. J. Priest, H. L. Caswell, Y. Budo, “Stress Anisotropy in Silicon Ocide Film,” J. Appl. Phys. 34, 347–351 (1963). [CrossRef]
  22. J. M. Nieuwenhuizen, H. B. Haanstra, “Microfractography of Thin Films,” Philips Tech. Rev. 27, 87–91 (1966).
  23. K. Hara, T. Hashimoto, E. Tatsumoto, “Origin of Anomalous Magnetic Anisotropy of Iron Films Evaporated at Oblique Incidence,” J. Phys. Soc. Jpn. 28, 254–255 (1970). [CrossRef]
  24. K. Okamoto, T. Hashimoto, K. Hara, E. Tatsumoto, “Origin of Magnetic Anisotropy of Iron Films Evaporated at Oblique Incidence,” J. Phys. Soc. Jpn. 31, 1374–1379 (1971). [CrossRef]
  25. J. L. Janning, “Thin Film Surface Orientation for Liquid Crystals,” Appl. Phys. Lett. 21, 173–174 (1972). [CrossRef]
  26. N. G. Nakhodkin, A. I. Shaldervan, “Effect of Vapour Incidence Angles on Profile and Properties of Condensed Films,” Thin Solid Films 10, 109–122 (1972). [CrossRef]
  27. G. D. Dixon, T. P. Brody, W. A. Hester, “Alignment Mechanism in Twisted Nematic Layers,” Appl. Phys. Lett. 24, 47–49 (1974). [CrossRef]
  28. W. Urbach, M. Boix, E. Guyon, “Alignment of Nematics and Smectics on Evaporated Films,” Appl. Phys. Lett. 25, 479–481 (1974). [CrossRef]
  29. D. Henderson, M. H. Brodsky, P. Chaudhari, “Simulation of Structural Anisotropy and Void Formation in Amorphous Thin Films,” Appl. Phys. Lett. 25, 641–643 (1974). [CrossRef]
  30. K. L. Chopra, “Some Surface Properties of Obliquely Deposited Films,” Jpn. J. Appl. Phys. Suppl. 2Pt. 2, 161–166 (1974).
  31. K. Hara, H. Fujiwara, T. Hashimoto, K. Okamoto, T. Hashimoto, “Crystallographic Investigations of Columnar Grains in Iron Film Evaporated at Oblique Incidence,” J. Phys. Soc. Jpn. 39, 1252–1256 (1975). [CrossRef]
  32. M. Yamashita, Y. Amemiya, “Effect of Substrate Surface on Alignment of Liquid Crystal Molecules,” Jpn. J. Appl. Phys. 15, 2087–2092 (1976). [CrossRef]
  33. N. G. Nakhodkin, A. I. Shaldervan, A. F. Bardamid, S. P. Chanakin, “Structural Peculiarities of Amorphous Germanium Films,” Thin Solid Films 34, 21–25 (1976). [CrossRef]
  34. B. A. Orlowski, W. E. Spicer, A. D. Baer, “Obliquely Deposited Amorphous Germanium Films,” Thin Solid Films 34, 31–34 (1976). [CrossRef]
  35. K. Okamoto, K. Hara, H. Fujiwara, T. Hashimoto, “Dependence of Columnar Structure on Film Thickness in Iron Film Evaporated at Oblique Incidence,” J. Phys. Soc. Jpn. 40, 293– 294 (1976). [CrossRef]
  36. T. Hashimoto, “Magnetic Anisotropy in Nickel Films Evaporated at Oblique Incidence,” J. Phys. Soc. Jpn. 41, 454–458 (1976). [CrossRef]
  37. T. Hashimoto, K. Hara, K. Okamoto, H. Fujiwara, “Top Shape of Columns in Oblique Incidence Iron Films,” J. Phys. Soc. Jpn. 41, 1433–1434 (1976). [CrossRef]
  38. W. E. L. Haas, J. E. Adams, J. M. Pollack, “Diffraction Effects in Liquid-Crystal Aligning Layers,” J. Appl. Phys. 47, 772–774 (1976). [CrossRef]
  39. W. A. Crossland, J. H. Morrissy, B. Needham, “Tilt Angle Measurement of Nematic Phases of Cyano-Biphenyls Aligned by Obliquely Evaporated Films,” J. Phys. D 9, 2001–2014 (1976). [CrossRef]
  40. D. Meyerhofer, “New Technique of Aligning Liquid Crystals on Surfaces,” Appl. Phys. Lett. 29, 691–692 (1976). [CrossRef]
  41. K. Toriyama, T. Ishibashi, “Measurement of Alignment Tilt in Twisted Nematic Displays,” in Nonemissive Electro-Optic Display, A. R. Kmetz, F. K. von Willisen, Eds. (Plenum, New York, 1976), p. 145. [CrossRef]
  42. L. A. Goodman, J. T. McGinn, C. H. Anderson, F. Digeronimo, “Topography of Obliquely Evaporated Silicon Oxide Films and Its Effect on Liquid-Crystal Orientation,” IEEE Trans. Electron Devices ED-24, 795–804 (1977). [CrossRef]
  43. R. Chabicovsky, G. Kocmann, “Liquid-Crystal Cells with Special Electrodes for the Generation of Uniform Colors by Optical Birefringence,” IEEE Trans. Electron Devices ED-24, 807–810 (1977). [CrossRef]
  44. S. Kim, D. J. Henderson, P. Chaudhari, “Computer Simulation of Amorphous Thin Films of Hard Spheres,” Thin Solid Films 47, 155–158 (1977). [CrossRef]
  45. A. Toda, H. Mada, S. Kobayashi, “Temperature Dependence of Pretilt Angle for Nematic Liquid Crystals,” Jpn. J. Appl. Phys. 17, 261–262 (1978). [CrossRef]
  46. T. Feng, A. K. Ghosh, C. Fishman, “Angle-of-Incidence Effects in Electron-Beam Deposited SnO2/Si Solar Cells,” Appl. Phys. Lett. 34, 198–199 (1979). [CrossRef]
  47. J. Griessing, “Dependence of Properties of Deposited Films on Angular Distribution of Incident Vapor Beam,” in Proceedings, European Hybrid Microelectronics Conference, Ghent (1979), pp. 229–240.
  48. H. J. Leamy, G. H. Gilmer, A. G. Dirks, “The Microstructure of Vapor Deposited Thin Films,” in Current Topics in Materials Science, Vol. 6, X. X. Kaldis (North-Holland, Amsterdam, 1980), pp. 309–343.
  49. K. K. Katati, H. Wilman, “An Electron Diffraction Study of Oriented Crystal Growth in Gold and Copper Films Condensed in Vacuum at Oblique Vapor Incidence,” J. Phys. D 13, 1477–1487 (1980). [CrossRef]
  50. S. J. Boichot, H. Wilman, “Quantitative Relations between the Orientation Axis Tilt, the Angle of Incidence of the Vapour and the Surface Form in Vacuum-Condensed Films,” Thin Solid Films 69, 191–199 (1980). [CrossRef]
  51. K. Hiroshima, M. Mochizuki, “Influence of SiO Film-Thickness on Liquid Crystal Orientation,” Jpn. J. Appl. Phys. 19, 567–568 (1980). [CrossRef]
  52. K. Kuwahara, T. Sumomogi, “Oblique Incidence Effect in Sputtering,” Bull. Jpn. Soc. Prec. Eng. 14, 165–166 (1980).
  53. J. Cheng, G. D. Boyd, F. G. Storz, “A Scanning Electron Microscope Study of Columnar Topography and Liquid Crystal Alignment on Obliquely Deposited Oxide Surfaces at Low Rates,” Appl. Phys. Lett. 37, 716–719 (1980). [CrossRef]
  54. E. Kita, K. Tagawa, M. Kamikubota, A. Tasaki, “Magnetic Recording Media Prepared by Oblique Incidence,” IEEE Trans. Magn. MAG-17, 3193–3195 (1981). [CrossRef]
  55. R. T. Kivaisi, “Optical Properties of Obliquely Evaporated Aluminum Films,” Sol. Energy Mater. 5, 115–127 (1981). [CrossRef]
  56. T. Hashimoto, K. Okamoto, K. Hara, M. Kamiya, H. Fujiwara, “Columnar Structure and Texture of Iron Films Evaporated at Oblique Angle of Incidence,” Thin Solid Films 91, 145–154 (1982). [CrossRef]
  57. S. P. Svensson, T. G. Andersson, “Film Thickness Distribution at Oblique Evaporation,” J. Vac. Sci. Technol. 20, 245–247 (1982). [CrossRef]
  58. R. T. Kivaisi, “Optical Properties of Obliquely Evaporated Aluminum Films,” Thin Solid Films 97, 153–163 (1982). [CrossRef]
  59. K. Ozawa, T. Yanada, H. Masuya, M. Sato, S. Ishio, M. Takahashi, “Oblique Incidence Effects in Evaporated Iron Thin Films,” J. Magn. Magn. Mater. 35, 289–292 (1983). [CrossRef]
  60. N. G. Nakhodkin, A. F. Bardamid, A. I. Novoselskaya, “Effects of the Angle of Deposition on Short-Range Order in Amorphous Germanium,” Thin Solid Films 112, 267–277 (1984). [CrossRef]
  61. S. Keitoku, T. Kanamori, M. Goto, “Inhomogeneous Concentration Distribution in Obliquely Evaporated Fe-Cu Films,” Jpn. J. Appl. Phys. 25, 1668–1671 (1986). [CrossRef]
  62. K. Hara, M. Kamiya, T. Hashimoto, K. Okamoto, H. Fujiwara, “Columnar Structure of Obliquely Deposited Iron Films Prepared at Low Substrate Temperatures,” Thin Solid Films 158, 239–244 (1988). [CrossRef]
  63. J. C. Manifacier, J. Gasiot, J. P. Fillard, “A Simple Method for the Determination of the Optical Constants n,k and the Thickness of a Weakly Absorbing Thin Film,” J. Phys. E 9, 1002–1004 (1976). [CrossRef]
  64. J. M. Siqueiros, R. Machorro, L. E. Regalado, “Determination of the Optical Constants of MgF2 and ZnS from Spectrophotometry Measurements and the Classical Oscillator Method,” Appl. Opt. 27, 2549–2553 (1988). [CrossRef] [PubMed]
  65. Standard Test Method for Haze and Luminous Transmittance of Transparent Plastics, ANSI/ASTM D1003–61 (Reapproved 1970).
  66. H. P. Klug, L. E. Alexander, X-Ray Diffraction Procedures (Wiley, London, 1974), p. 272.
  67. Ref. 66, p. 437.
  68. M. S. Chandrasekharaiah, in Characterization of High Temperature Vapors, J. L. Margrave, Ed. (Wiley, London, 1967), p. 496.
  69. K. A. Gingerich, “Molecular Species in High Temperature Vaporization,” in Current Topics in Material Science, Vol. 6, E. Kaldis, Ed. (North-Holland, Amsterdam, 1980), pp. 345–462.
  70. J. Drowart, “Mass Spectrometric Studies of the Vaporization of Inorganic Substances at High Temperatures,” in Condensation and Evaporation of Solid, E. Rutner, P. Goldfinger, J. P. Hirth, Eds. (Gordon & Breach, New York, 1964), pp. 255–310.
  71. K. C. Mills, Thermodynamic Data for Inorganic Sulphides, Selenides and Tellurides (Butterworths, London, 1974).
  72. E. L. Simons, “Dissociation Pressures of Oxides, Hydrides and Nitrides,” in Scientific Foundations of Vacuum Technique, S. Dushmann, J. M. Lafferty, Eds. (Wiley, London, 1962), Chap. 11.
  73. T. Motohiro, Y. Taga, “Geometrical Factors of Argon Incorporation in SiO2 Films Deposited by Ion Beam Sputtering,” Thin Solid Films 120, 313–327 (1984). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited