OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Vol. 28, Iss. 13 — Jul. 1, 1989
  • pp: 2651–2656

High resolution laser imaging system

Thomas G. Kyle  »View Author Affiliations


Applied Optics, Vol. 28, Issue 13, pp. 2651-2656 (1989)
http://dx.doi.org/10.1364/AO.28.002651


View Full Text Article

Enhanced HTML    Acrobat PDF (845 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Computations indicate that a synthetic aperture laser imaging system can provide images with 10-cm resolution at satellite ranges using a 10-W cw laser. When imaging satellites from the ground, the synthetic aperture system reduces atmospheric degradations. The system uses 20-cm diam receiver optics. The low laser power is made possible by using separate transmitter and receiver optics and coded pulses with a 50% transmitter duty cycle. The coded pulses are derived from Hadamard matrices for which there is an efficient algorithm to transform the received data into images. The synthetic aperture yields spatial resolutions independent of range, and the coded pulses result in an effective range dependence of r−2 instead of r−4.

© 1989 Optical Society of America

History
Original Manuscript: February 17, 1988
Published: July 1, 1989

Citation
Thomas G. Kyle, "High resolution laser imaging system," Appl. Opt. 28, 2651-2656 (1989)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-28-13-2651


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. W. M. Brown, L. J. Porcello, “An Introduction to Synthetic-Aperture Radar,” IEEE Spectrum 52 (Sept.1969).
  2. C. Elachi, T. Bicknell, R. L. Jordan, C. Wu, “Spaceborne Synthetic Aperture Imaging Radars: Applications, Techniques, and Technology,” Proc. IEEE 70, 1174 (1982). [CrossRef]
  3. B. C. Barber, “Theory of Digital Imaging from Orbital Synthetic-Aperture Radar,” Int. J. Remote Sensing 6, 1009 (1985). [CrossRef]
  4. T. S. Lewis, H. S. Hutchins, “A Synthetic Aperture at 10.6 Microns,” Proc. IEEE 58, 1781 (1970). [CrossRef]
  5. C. C. Aleksoff et al., “Synthetic Aperture Imaging with a Pulsed CO2 Laser,” Proc. Soc. Photo-Opt. Instrum. Eng. 783, 29 (1987).
  6. R. N. McDonough, B. E. Raff, J. L. Kerr, “Image Formation from Synthetic-Aperture Radar Signals,” Johns Hopkins APL Tech. Dig. 6, 300 (1987).
  7. K. F. Hulme, B. S. Collins, G. D. Constant, J. T. Pinson, “A CO2 Laser Rangefinder Using Heterodyne Detection and Chirp-Pulse Compression,” Opt. Opt. Quantum Electron. 13, 35 (1981). [CrossRef]
  8. K. F. Hulme, “CO2 Heterodyne Rangefinders, Velocimeters and Radars,” Infrared Phys. 25, 457 (1985). [CrossRef]
  9. C. Wu, K. Y. Liu, M. Jin, “Modeling and a Correlation Algorithm for Spaceborne SAR Signals,” IEEE Trans. Aerosp. Electron. Syst. AES-18, 563 (1982). [CrossRef]
  10. R. O. Harger, Synthetic Aperture Radar Systems (Academic, New York, 1970).
  11. M. Harwit, M. J. Sloane, Hadamard Transform Optics (Academic, New York, 1979).
  12. E. D. Nelson, M. L. Fredman, “Hadamard Spectroscopy,” J. Opt. Soc. Am. 60, 1664 (1970). [CrossRef]
  13. E. E. Fenimore, “Large Symmetric π Transformations for Hadamard Transforms,” Appl. Opt. 22, 826–829 (1983). [CrossRef] [PubMed]
  14. R. E. Roberts, J. E. A. Selby, L. M. Biberman, “Infrared Continuum Absorption by Atmospheric Water Vapor in the 8–12-μm Window,” Appl. Opt. 15, 2085–2090 (1976). [CrossRef] [PubMed]
  15. B. A. Stephan, “Field Tests and Performance Analysis of a Heterodyne CO2 Laser Radar,” Proc. Soc. Photo-Opt. Instrum. Eng. 590, 388 (1985).
  16. J. F. Shanley, C. T. Flanagan, “Wide Bandwidth, High-Sensitivity Hg0.8Cd0.2Te Photodiodes for Laser Applications,” Proc. Soc. Photo-Opt. Instrum. Eng. 227, 123 (1980).
  17. J. Lemaire, J. C. Depannemaecker, F. Herlemont, Yu. Riant, J. Fleury, “Recent Developments in Materials and Detectors for the Infrared,” Proc. Soc. Photo-Opt. Instrum. Eng. 588, 26 (1985).
  18. T. A. Nussmeier, R. L. Abrams, “Stark Cell Stabilization of CO2 Laser,” Appl. Phys. Lett. 25, 615 (1974). [CrossRef]
  19. G. M. Carter, “Tunable High-Efficiency Microwave Frequency Shifting of Infrared Lasers,” Appl. Phys. Lett. 32, 810 (1978). [CrossRef]
  20. A. Consortini, P. Pandolfini, L. Ronchi, R. Vanni, in Space Optics, B. J. Thompson, R. R. Shannon, Eds. (National Academy of Sciences, Washington, DC, 1974).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 
Fig. 4 Fig. 5
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited