OSA's Digital Library

Applied Optics

Applied Optics


  • Vol. 28, Iss. 14 — Jul. 15, 1989
  • pp: 2940–2944

Near infrared rugate filter fabrication by ion beam assisted deposition of Si(1−X)NX films

Edward P. Donovan, D. Van Vechten, Alan D. F. Kahn, Carmine A. Carosella, and Graham K. Hubler  »View Author Affiliations

Applied Optics, Vol. 28, Issue 14, pp. 2940-2944 (1989)

View Full Text Article

Enhanced HTML    Acrobat PDF (733 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



The rugate filter employs a sinusoidal refractive index depth profile to produce high reflection in a narrow band of wavelengths. Fabrication relies on a continuously variable index of refraction in the wavelength regime of interest. The near IR refractive index of amorphous silicon–nitrogen films decreases continuously as the composition varies from pure silicon to stoichiometric silicon nitride (Si3N4). Ion implantation was found unsuitable as a fabrication method for rugate filters. Homogeneous and inhomogeneous films up to 5 μm in thickness have been produced by simultaneous deposition of electron beam evaporated silicon and of energetic nitrogen particles arising from an ion beam. The relative fluxes of beam and evaporant are found to determine the ratio of nitrogen to silicon in the films and therefore to determine the index. Single-band reflection filters of the rugate design of high peak optical density were fabricated under computer control using a quartz crystal oscillator shielded from the beam to monitor the silicon evaporation and three suppressed Faraday cups to monitor the ion beam current.

© 1989 Optical Society of America

Original Manuscript: June 29, 1988
Published: July 15, 1989

Edward P. Donovan, D. Van Vechten, Alan D. F. Kahn, Carmine A. Carosella, and Graham K. Hubler, "Near infrared rugate filter fabrication by ion beam assisted deposition of Si(1−X)NX films," Appl. Opt. 28, 2940-2944 (1989)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. C. Strecker, W. Johnson, J. Davidson, “The Preparation of a SiGe Rugate Variable Index Optical Film by a Solid State Diffusion Process,” AD B099120 (1985).
  2. E. Hecht, A. Zajak, Optics (Addison-Wesley, Reading, MA, 1979).
  3. W. H. Southwell, “Use of Gradient Index for Spectral Filters,” Proc. Soc. Photo-Opt. Instrum. Eng. 464, 110–114 (1984).
  4. W. H. Southwell, W. J. Gunning, R. L. Hall, “Narrow-Bandpass Filter Using Partitioned Cavities,” Proc. Soc. Photo-Opt. Instrum. Eng. 678, 177–184 (1986).
  5. P. Baumeister, “Simulation of a Rugate Filter Via a Stepped-Index Dielectric Multilayer,” Appl. Opt. 25, 2644–2645 (1986). [CrossRef] [PubMed]
  6. J. R. Palmer, “Optical Distortion of Rugate Coated Optical Components Used in High Power Laser Systems,” Proc. Soc. Photo-Opt. Instrum. Eng. 805, 117–127 (1987).
  7. C. S. Bartholomew, H. T. Betz, J. L. Grieser, R. A. Spence, N. P. Murarka, “Rugate Filters by Laser Flash Evaporation of SiOxNy on Room Temperature Polycarbonate,” Proc. Soc. Photo-Opt. Instrum. Eng. 821, 198–204 (1987).
  8. B. G. Bovard, “Derivation of a Matrix describing a Rugate Dielectric Thin Film,” Appl. Opt. 27, 1998–2005 (1988). [CrossRef] [PubMed]
  9. O. Heavens, Optical Properties of Thin Solid Films (Dover, New York, 1965).
  10. G. K. Hubler, P. R. Malmberg, T. P. Smith, “Refractive Index Profiles and Range Distributions of Silicon Implanted with High-Energy Nitrogen,” J. Appl. Phys. 50, 7147–7155 (1979). [CrossRef]
  11. G. K. Hubler, P. R. Malmberg, T. P. Smith, “Ion-Implanted Multilayer Optical Interference Filter,” U.S. Pat.4,262,056 (1981).
  12. S. M. Rossnagel, J. J. Cuomo, “Ion-Beam-Assisted Depostion and Synthesis,” Mat. Res. Soc. Bull. 12, 40 (1987).
  13. B. Friedrich, S. L. Howard, A. L. Rockwood, W. E. Trafton, D. W. Hu, J. H. Futrell, “Crossed Molecular Beam Study of the Reaction Dynamics of the Charge Transfer Reaction of N2+(X2Σg,ν = 0) with N2(X1Σg,ν = 0) at Low and Intermediate Energies,” Int. J. Mass Spectrom. Ion Phys. 59, 203–218 (1984). [CrossRef]
  14. E. H. Hirsh, I. K. Varga, “Thin Film Annealing by Ion Bombardment,” Thin Solid Films 69, 99–105 (1980). [CrossRef]
  15. D. R. Brighton, G. K. Hubler, “Binary Collision Cascade Prediction of Critical Ion-to-Atom Arrival Ratio in the Production of Thin Films with Reduced Intrinsic Stress,” Nucl. Instrum. Methods B 28, 527–533 (1987). [CrossRef]
  16. W. K. Chu, J. M. Mayer, M. Nicolet, Backscattering Spectrometry (Academic, New York, 1978).
  17. L. R. Doolittle, “Algorithms for the Rapid Simulation of Rutherford Backscattering Spectra,” Nucl. Instrum. Methods B 9, 344–351 (1985). [CrossRef]
  18. K. W. Wang, W. G. Spitzer, G. K. Hubler, D. K. Sadana, “Ion Implantation Effects of Si by 12C, 29Si, and 120Sn: Amorphization and Annealing Effects,” J. Appl. Phys. 58, 4553–4564 (1985). [CrossRef]
  19. J. A. Borders, W. Beezhold, “Infrared Studies of SiC, Si3N4, and SiO2 in Ion-Implanted Silicon,” in Ion Implantation in Semiconductors, I. Ruge, J. Grawl, Eds. (Springer-Verlag, New York, 1971), p. 241. [CrossRef]
  20. K. S. Grabowski, A. D. F. Kahn, E. P. Donovan, C. A. Carosella, “Thermal Stability of Silicon Nitride Coatings Produced by Ion Assisted Deposition,” Nucl. Instrum. Methods B39, 190–193 (1989).
  21. H. D. Keith, F. J. Padden, “A Phenomenological Theory of Spherulitic Crystallization,” J. Appl. Phys. 34, 2409–2421 (1963). [CrossRef]
  22. N. H. Hartshorne, A. Stuart, Crystals and the Polarising Microscope (Elsevier, New York, 1970).
  23. E. P. Donovan, D. R. Brighton, G. K. Hubler, D. Van Vechten, “Ion Beam Assisted Deposition of Substoichiometric Silicon Nitride,” Nucl. Instrum. Methods B 19/20983–986 (1987). [CrossRef]
  24. D. Van Vechten, G. K. Hubler, E. P. Donovan, “Characterization of a 3 cm Kaufman Ion Source with Nitrogen Feed Gas,” Vacuum 36, 841–845 (1986). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3
Fig. 4 Fig. 5

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited