OSA's Digital Library

Applied Optics

Applied Optics


  • Vol. 28, Iss. 16 — Aug. 15, 1989
  • pp: 3397–3404

Wavelength choice for soft x-ray laser holography of biological samples

Richard A. London, Mordecai D. Rosen, and James E. Trebes  »View Author Affiliations

Applied Optics, Vol. 28, Issue 16, pp. 3397-3404 (1989)

View Full Text Article

Enhanced HTML    Acrobat PDF (1123 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



The choice of an optimal wavelength for soft x-ray holography is discussed, based on a description of scattering by biological structures within an aqueous environment. We conclude that wavelengths slightly longer than the 43.7-Å carbon K-edge provide a good trade off between minimizing the necessary source power and the dose absorbed by the sample and maximizing the penetrability of the x-rays through wet samples. This differs from the previous notion that wavelengths within the water window (between 23.2 Å and 43.7 Å) would be the best for holography. The problem of motion resulting from the absorption of x rays during a short exposure is described. The possibility of using ultrashort exposures in order to capture the image before motion can compromise the resolution is explored. The impact of these calculations on the question of the feasibility of using an x-ray laser for holography of biological structures is discussed.

© 1989 Optical Society of America

Original Manuscript: April 17, 1989
Published: August 15, 1989

Richard A. London, Mordecai D. Rosen, and James E. Trebes, "Wavelength choice for soft x-ray laser holography of biological samples," Appl. Opt. 28, 3397-3404 (1989)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. For recent reviews see D. Sayre, M. Howells, J. Kirz, H. Rarback, Eds., X-Ray Microscopy II, (Springer-Verlag, New York, 1988), and the references therein.
  2. Discussions of x-ray holography began with A. Baez, “A Study in Diffraction Microscopy with Special Reference to X-Rays,” J. Opt. Soc. Am. 42, 756–762 (1952). [CrossRef]
  3. D. Attwood, K. Halbach, K.-J. Kim, “Tunable Coherent X-Rays,” Science 228, 1265–1272 (1985). [CrossRef] [PubMed]
  4. D. L. Matthews, R. R. Freeman, Eds., “The Generation of Coherent XUV and Soft X-Ray Radiation,” J. Opt. Soc. Am. B.4, 530 (1987). [CrossRef]
  5. M. Howells, C. Jacobsen, J. Kirz, R. Feder, K. McQuaid, S. Rothman, “X-Ray Holograms at Improved Resolution: A Study of Zymogen Granules,” Science 238, 514–517 (1987). [CrossRef] [PubMed]
  6. J. E. Trebes et al., “Demonstration of X-ray Holography with an X-Ray Laser,” Science 238, 517–519 (1987). [CrossRef] [PubMed]
  7. J. C. Solem, G. C. Baldwin, “Microholography of Living Organisms,” Science, 218, 229–235 (1982). [CrossRef] [PubMed]
  8. J. C. Solem, High-Intensity X-ray Holography: An Approach to High-Resolution Snapshot Imaging of Biological Specimens, Los Alamos National Laboratory Report LA-9508-MS (1982).
  9. J. C. Solem, G. F. Chapline, “X-Ray Biomicroholography,” Opt. Eng. 23, 193–203 (1984). [CrossRef]
  10. J. C. Solem, “Imaging Biological Specimens with High-Intensity Soft X Rays,” J. Opt. Soc. Am. B. 3, 1551–1565 (1986). [CrossRef]
  11. M. Howells, “Fundamental Limits in X-Ray Holography,” in X-Ray Microscopy II, D. Sayre, M. Howells, J. Kirz, H. Rarback, Eds. (Springer-Verlag, New York, 1988) p. 263.
  12. C. Jacobsen, “X-Ray Holographic Microscopy of Biological Systems Using an Undulator,” Ph.D. Dissertation, SUNY-Stony Brook, New York, (1988).
  13. C. Jacobsen, Lawrence Berkeley Laboratory; private communication.
  14. H. C. van de Hulst, Light Scattering by Small Particles, (Dover, New York, 1981).
  15. M. Kerker, The Scattering of Light and Other Electromagnetic Radiation, (Academic, New York, 1969).
  16. B. L. Henke, P. Lee, T. J. Tanaka, R. L. Shimabukuro, R. K. Fujikawa, “Low-Energy X-Ray Interaction Coefficients: Photoabsorption, Scattering, and Reflection,” At. Data Nucl. Data Tables 27, 1–144 (1982). [CrossRef]
  17. A. A. Zamyatnin, “Amino Acid, Peptide, and Protein Volume in Solution,” Annu. Rev. Biophys. Bioeng. 13, 145–165 (1984). [CrossRef] [PubMed]
  18. J. P. Watson, N. H. Hopkins, J. W. Roberts, J. A. Steitz, A. M. Weiner, Molecular Biology of the Gene, 4th Ed. (Benjamin Cummings, Menlo Park, 1987).
  19. A. L. Olins, R. D. Carlson, E. B. Wright, D. E. Olins, “Chromatin v-Bodies: Isolation, Subfractionation and Physical Characterization,” Nucleic Acids Res., 3, 3271–3290 (1976). [CrossRef] [PubMed]
  20. R. W. James, The Optical Principles of The Diffraction of X-rays (Bell, London, 1967) p. 149.X-Ray Microscopy II, D. Sayre, M. Howells, J. Kirz, H. Rarback, Eds. (Springer-Verlag, New York, 1988) p. 228.
  21. T. W. Barbee, “Use of Multilayer Diffraction Gratings in the Determination of X-Ray, Soft X-Ray and VUV Elemental Scattering Cross-sections,” in X-Ray and Vacuum Ultraviolet Interaction Data Bases, Calculations, and Measurements, N. K. del Grande, P. Lee, J. A. R. Samson, D. Y. Smith, Eds., Proc. Soc. Photo-Opt. Instrum. Eng.911, 169–176 (1988).
  22. N. K. Del Grande, K. G. Tirsell “Program to Obtain Reliable Photoabsorption Cross Sections,” in X-Ray and Vacuum Ultraviolet Interaction Data Bases, Calculations, and Measurements, N. K. del Grande, P. Lee, J. A. R. Samson, D. Y. Smith, Eds., Proc. Soc. Photo-Opt. Instrum. Eng.911, 6–10 (1988).
  23. E. Gullikson, J. Davis, Lawrence Berkeley Laboratory; private communication.
  24. R. Dandliker, K. Weiss, “Reconstruction of the Three-Dimensional Refractive Index from Scattered Waves,” Opt. Commun. 1, 323–328 (1970). [CrossRef]
  25. E. Wolf, “Three-Dimensional Structure Determination of Semi-Transparent Objects from Holographic Data,” Opt. Commun. 1, 153–156 (1970). [CrossRef]
  26. M. D. Rosen, R. A. London, P. L. Hagelstein, “The Scaling of Ne-like X-ray Laser Schemes to Short Wavelength,” Phys. Fluids, 31, 666–670 (1988). [CrossRef]
  27. D. Sayre, J. Kirz, R. Feder, D. M. Kim, E. Spiller, “Potential Operating Region for Ultrasoft X-ray Microscopy of Biological Materials,” Science 196, 1339–1340 (1977). [CrossRef] [PubMed]
  28. G. Schmahl, D. Rudolph, P. Guttmann, “Phase Contrast X-Ray Microscopy—Experiments at the BESSY Storage Ring,” in
  29. G. Schmahl, “Amplitude and Phase Contrast X-Ray Microscopy,” in Short Wavelength Coherent Radiation: Generation and Applications, Eds. R. Falcone, J. Kirz, J. Opt. Soc. Am. B 6, 309 (1989).
  30. A. Mozumder, “Charged Particle Tracks and their Structure,” in Advances in Radiation Chemistry, M. Burton, J. L. Magee, Eds. (Wiley Interscience, New York, 1969) p. 1–102.
  31. C. J. Keane et al., “Soft X-Ray Laser Source Development and Applications Experiments at Lawrence Livermore National Laboratory,” J. Phys. B. (in press) (1989). [CrossRef]
  32. R. A. London, M. D. Rosen, M. S. Maxon, D. C. Eder, P. L. Hagelstein, “Theory and Design of Soft X-Ray Laser Experiments at the Lawrence Livermore National Laboratory,” J. Phys. B1986 (in press).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited