OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Vol. 28, Iss. 17 — Sep. 1, 1989
  • pp: 3556–3566

Laser-induced fluorescence determination of temperatures in low pressure flames

Karen J. Rensberger, Jay B. Jeffries, Richard A. Copeland, Katharina Kohse-Höinghaus, Michael L. Wise, and David R. Crosley  »View Author Affiliations


Applied Optics, Vol. 28, Issue 17, pp. 3556-3566 (1989)
http://dx.doi.org/10.1364/AO.28.003556


View Full Text Article

Enhanced HTML    Acrobat PDF (1482 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Spatially resolved temperatures in a variety of low pressure flames of hydrogen and hydrocarbons burning with oxygen and nitrous oxide are determined from OH, NH, CH, and CN laser-induced fluorescence rotational excitation spectra. Systematic errors arising from spectral bias, time delay, and temporal sampling gate of the fluorescence detector are considered. In addition, we evaluate the errors arising from the influences of the optical depth and the rotational level dependence of the fluorescence quantum yield for each radical. These systematic errors cannot be determined through goodness-of-fit criteria and they are much larger than the statistical precision of the measurement. The severity of these problems is different for each radical; careful attention to the experimental design details for each species is necessary to obtain accurate LIF temperature measurements.

© 1989 Optical Society of America

History
Original Manuscript: November 9, 1988
Published: September 1, 1989

Citation
Karen J. Rensberger, Jay B. Jeffries, Richard A. Copeland, Katharina Kohse-Höinghaus, Michael L. Wise, and David R. Crosley, "Laser-induced fluorescence determination of temperatures in low pressure flames," Appl. Opt. 28, 3556-3566 (1989)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-28-17-3556


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. D. R. Crosley, G. P. Smith, “Laser-Induced Fluorescence Spectroscopy for Combustion Diagnostics,” Opt. Engr. 22, 545–553 (1983); J. H. Bechtel, C. J. Dasch, R. Teets, “Combustion Research with Lasers” in Laser Applications, R. K. Erf, J. F. Ready, Eds. (Academic, New York, 1983); R. P. Lucht, “Applications of Laser-Induced Fluorescence Spectroscopy for Combustion and Plasma Diagnostics” in Laser Spectroscopy and Its Applications, L. J. Radziemski, R. Solarz, J. A. Paisner, Eds. (Marcel Dekker, New York, 1986); D. R. Crosley, “Laser-Induced Fluorescence Measurement of Combustion Chemistry Intermediates,” High Temp. Mat. Proc. 7, 41–54 (1986); A. C. Eckbreth, Laser Diagnostics for Combustion Temperature and Species (Abacus, Cambridge, MA1987).
  2. K. Kohse-Höinghaus, P. Koczar, T. Just, “Absolute Concentration Measurements of OH in Low Pressure Hydrogen-Oxygen, Methane-Oxygen and Acetylene-Oxygen Flames,” in Twenty-First Symposium (International) on Combustion (The Combustion Institute, Pittsburgh, 1988), p. 1719–1727. [CrossRef]
  3. A. G. Gaydon, H. G. Wolfhard, Flames, Their Structure, Radiation and Temperature, Fourth Edition (Chapman & Hall, London, 1979).
  4. S. S. Penner, C. P. Wang, M. Y. Bahadori, “Laser Diagnostics Applied to Combustion Studies,” in Twentieth Symposium (International) on Combustion (The Combustion Institute, Pittsburgh, 1985), p. 1149–1176. [CrossRef]
  5. K. J. Rensberger, M. J. Dyer, R. A. Copeland, “Time-Resolved CH(A2Δ and B2Σ−) Laser-Induced Fluorescence in Low Pressure Hydrocarbon Flames,” Appl. Opt. 27, 3679–3689 (1988). [CrossRef] [PubMed]
  6. A. M. Wodtke, L. Huwel, H. Schlüter, H. Voges, G. Meijer, P. Andresen, “Predissociation of O2 in the B State,” J. Chem. Phys. 89, 1929–1935 (1988). [CrossRef]
  7. G. Laufer, R. L. McKenzie, “Temperature Measurements in Hypersonic Air Flows using Laser-Induced O2-Fluorescence,” AIAA/NASA/AFWAL Conference on Sensors and Measurements Techniques for Aeronautical Applications, Atlanta, September1988.
  8. P. Andresen, A. Bath, S. Gröger, H. W. Lülf, G. Meijer, J. J. ter Meulen, “Laser-Induced Fluorescence with Tunable Excimer Lasers as a Possible Method for Instantaneous Temperature Field Measurements at High Pressures: Checks with an Atmospheric Flame,” Appl. Opt. 27, 365–378 (1988). [CrossRef] [PubMed]
  9. A. C. Eckbreth, “Recent Advances in Laser Diagnostics for Temperature and Species Concentration in Combustion,” in Eighteenth Symposium (International) on Combustion (The Combustion Institute, Pittsburgh, 1981), p. 1471–1488. [CrossRef]
  10. W. R. Anderson, L. J. Decker, A. J. Kotlar, “Temperature Profile of a Stoichiometric CH4/N2O Flame from Laser Excited Fluorescence Measurements on OH,” Combust. Flame 48, 163–177 (1982). [CrossRef]
  11. G. H. Dieke, H. M. Crosswhite, “The Ultraviolet Bands of OH,” J. Quant. Spectrosc. Radiat. Transfer 2, 97–199 (1962). [CrossRef]
  12. C. R. Brazier, R. S. Ram, P. F. Bernath, “Fourier Transform Spectroscopy of the A3II–X3Σ− Transition of NH,” J. Mol. Spectrosc. 120, 381–402 (1986). [CrossRef]
  13. C. E. Moore, H. P. Broida, “CH in the Solar Spectrum,” J. Res. Natl. Bur. Stand. 63A, 19–53 (1959). [CrossRef]
  14. J. M. Brown, J. T. Hougen, K. P. Huber, J. W. C. Johns, I. Kopp, H. Lefebvre-Brion, A. J. Merer, D. A. Ramsay, J. Kostas, R. N. Zare, “The Labeling of Parity Doublet Levels in Linear Molecules,” J. Mol. Spectrosc. 55, 500–503 (1975). [CrossRef]
  15. M. B. Colket, “Spectroscopic Absorption Model for CN(X2Σ→B2Σ): Comparison of Experiments and Theory,” J. Quant. Spectrosc. Radiat. Transfer 31, 7–13 (1984). [CrossRef]
  16. G. H. Mount, J. L. Linsky, R. A. Shine, “One- and Multi-Component Models of the Upper Photosphere Based on Molecular Spectra,” Sol. Phys. 32, 13–30 (1973). [CrossRef]
  17. R. N. Zare, A. L. Schmeltekopf, W. J. Harrop, D. L. Albritton, “A Direct Approach for the Reduction of Diatomic Spectra to Molecular Constants for the Construction of RKR Potentials,” J. Mol. Spectrosc. 46, 37–66 (1973). [CrossRef]
  18. B. M. Krupp, “A New Analysis of the A2Δ–X2Π System of CH,” Astrophys. J. 189, 389–397 (1974). [CrossRef]
  19. I. Botterud, A. Lofthus, L. Veseth, “Term Values and Molecular Parameters for CH and CH+,” Phys. Scr. 8, 218–224 (1973). [CrossRef]
  20. K. P. Huber, G. Herzberg, Constants of Diatomic Molecules (Van Nostrand/Reinhold, New York, 1979).
  21. D. R. Crosley, R. K. Lengel, “Relative Transition Probabilities and the Electronic Transition Moment in the A–X System of OH,” J. Quant. Spectrosc. Radiat. Transfer 15, 579–591 (1975). [CrossRef]
  22. I. L. Chidsey, D. R. Crosley, “Calculated Rotational Transition Probabilities for the A–X System of OH,” J. Quant. Spectrosc. Radiat. Transfer 23, 187–199 (1980). [CrossRef]
  23. D. R. Crosley, “Semiquantitative Laser-Induced Fluorescence in Flames,” Combust. Flame, 00, 000 in press, 1989.
  24. G. P. Smith, D. R. Crosley, “Quantitative Laser-Induced Fluorescence in OH: Transition Probabilities and the Influence of Energy Transfer,” in Eighteenth Symposium (International) on Combustion (The Combustion Institute, Pittsburgh, 1981), p. 1511–1520; D. R. Crosley, G. P. Smith, “Rotational Energy Transfer and LIF Temperature Measurements,” Combust. Flame 44, 27–34 (1982). [CrossRef]
  25. C. Chan, J. W. Daily, “Laser Excitation Dynamics of OH in Flames,” Appl. Opt. 19, 1357–1367 (1980); R. P. Lucht, D. W. Sweeney, N. M. Laurendeau, “Time-Resolved Fluorescence Investigation of Rotational Transfer in A2Σ+(υ = 0) OH,” Appl. Opt. 25, 4086–4095 (1986). [CrossRef] [PubMed]
  26. N. L. Garland, D. R. Crosley, “Energy Transfer Processes in CH A2Δ and B2Σ− in an Atmospheric Pressure Flame,” Appl. Opt. 24, 4229–4237 (1985). [CrossRef] [PubMed]
  27. R. J. Cattolica, D. Stepowski, D. Puechberty, M. Cottereau, “Laser-Induced Fluorescence of the CH Molecule in a Low Pressure Flame,” J. Quant. Spectrosc. Transfer 32, 363–370 (1984). [CrossRef]
  28. R. G. Joklik, J. W. Daily, “LIF Study of CH A2Δ Collision Dynamics in a Low Pressure Oxy-Acetylene Flame,” Combust. Flame 69, 211–219 (1987). [CrossRef]
  29. (a) OH: K. R. German, “Direct Measurements of the Radiative Lifetimes of the A2Σ+(υ′ = 0) States of OH and OD,” J. Chem. Phys. 62, 2584–2587 (1975); J. Brzozowski, P. Erman, M. Lyyra, “Precision Estimates of the Predissociation Rates of the OH A2Σ+ State (υ ≤ 2),” Phys. Scr. 17, 507–511 (1978); I. S. McDermid, J. B. Laudenslager, “Radiative Lifetimes and Quenching Rate Coefficients for Directly Excited Rotational Levels of OH(A2Σ+,υ′ = 0),” J. Chem. Phys. 76, 1824–1831 (1982). [CrossRef]
  30. (b) NH: W. H. Smith, J. Brzozowski, P. Erman, “Lifetime Studies of the NH Molecule: New Predissociations, the Dissociative Energy, and Interstellar Diatomic Recombination,” J. Chem. Phys. 64, 4628–4633 (1976). [CrossRef]
  31. (c) CH: J. Brzozowski, P. Bunker, N. Elander, P. Erman, “Predissociation Effects in the A, B, and C States of CH and the Interstellar Formation Rate of CH via Inverse Predissociation,” Astrophys. J. 207, 414–424 (1976). [CrossRef]
  32. (a) OH: R. A. Copeland, M. J. Dyer, D. R. Crosley, “Rotational-Level-Dependent Quenching of A2Σ+ OH and OD,” J. Chem. Phys. 82, 4022–4032 (1985). [CrossRef]
  33. (b) NH: N. L. Garland, D. R. Crosley, “Rotational-Level-Dependent Quenching of the A3Πi,υ′ = 0 State of NH,” J. Chem. Phys., 90, 3566–3573 (1989). [CrossRef]
  34. K. Kohse-Höinghaus, J. B. Jeffries, R. A. Copeland, G. P. Smith, D. R. Crosley, “The Quantitative LIF Determination of OH Concentrations in Low Pressure Flames,” in Twenty-Second Symposium (International) on Combustion (The Combustion Institute, Seattle, 1988), pp. 00–00 in press; J. B. Jeffries, K. Kohse-Höinghaus, G. P. Smith, R. A. Copeland, D. R. Crosley, “Rotational-Level-Dependent Quenching of OH(A2Σ+) at Flame Temperatures,” Chem. Phys. Lett., 152, 160–1661988. [CrossRef]
  35. K. J. Rensberger, R. A. Copeland, M. L. Wise, D. R. Crosley, “NH and CH Laser-Induced Fluorescence in Low Pressure Flames: Quantum Yields from Time-Resolved Measurements,” in Twenty-Second Symposium (International) on Combustion (The Combustion Institute, Seattle, 1988) pp. 000–000, in press.
  36. R. A. Copeland, M. L. Wise, K. J. Rensberger, D. R. Crosley, “Time-Resolved Laser-Induced Fluorescence of the NH Radical in Low Pressure N2O Flames,” Appl. Opt.28, 000–000 (1989), in press, 1 Aug. [CrossRef]
  37. R. K. Lengel, D. R. Crosley, “Energy Transfer in A2Σ+ OH. Π. Vibrational,” J. Chem. Phys. 68, 5309–0000 (1978); G. P. Smith, D. R. Crosley, “Vibrational Energy Transfer in A2Σ+ OH in Flames,” Appl. Opt. 22, 1428–0000 (1983); R. A. Copeland, M. L. Wise, D. R. Crosley, “Vibrational Energy Transfer and Quenching of OH(A2Σ+,υ′ = 1),” J. Phys. Chem., 92, 5710–5715, 1988. [CrossRef] [PubMed]
  38. K. H. Eberius, K. Hoyermann, H. G. Wagner, “Experimental and Mathematical Study of a Hydrogen-Oxygen Flame,” in Thirteenth Symposium (International) on Combustion (The Combustion Institute, Pittsburgh, PA1971), pp. 713–721. [CrossRef]
  39. N. Duric, P. Erman, M. Larsson, “The Influence of Collisional Transfers and Perturbations on Measured A and B State Lifetimes in CN,” Phys. Scr. 18, 39–46 (1978). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited