OSA's Digital Library

Applied Optics

Applied Optics


  • Vol. 28, Iss. 17 — Sep. 1, 1989
  • pp: 3603–3615

Airborne and spaceborne lidar measurements of water vapor profiles: a sensitivity analysis

Syed Ismail and Edward V. Browell  »View Author Affiliations

Applied Optics, Vol. 28, Issue 17, pp. 3603-3615 (1989)

View Full Text Article

Enhanced HTML    Acrobat PDF (1895 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



This paper presents an evaluation of the random and systematic error sources associated with differential absorption lidar (DIAL) measurements of tropospheric water vapor (H2O) profiles from airborne and spaceborne platforms. The results of this analysis are used in the development and performance evaluation of the Lidar Atmospheric Sensing Experiment (LASE) H2O DIAL system presently under development at the NASA Langley Research Center for operation on a high altitude ER–2 (advanced U–2) aircraft. The analysis shows that a <10% H2O profile measurement accuracy is possible for the LASE system with a vertical and horizontal resolution of 200 m and 10 km, respectively, at night and 300 m and 20 km during the day. Global measurements of H2O profiles from spaceborne DIAL systems can be made to a similar accuracy with a vertical resolution of 500 m and a horizontal resolution of 100 km.

© 1989 Optical Society of America

Original Manuscript: December 9, 1988
Published: September 1, 1989

Syed Ismail and Edward V. Browell, "Airborne and spaceborne lidar measurements of water vapor profiles: a sensitivity analysis," Appl. Opt. 28, 3603-3615 (1989)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. C. Prabhakara, G. Dalu, “Passive Remote Sensing of the Water Vapor in the Troposphere and its Meteorological Significance,” in Atmospheric Water Vapor, A. Deepak, T. D. Wilkerson, L. H. Ruhrke, Eds. (Academic, New York, 1980).
  2. S. H. Melfi, D. Whiteman, R. Ferrare, V. Falcone, “Observation of Frontal Passages Using a Raman Lidar,” Abstracts, Fourteenth International Laser Radar Conference, San Candido, Italy, 24–26 June (1988).
  3. R. M. Schotland, “Errors in the Lidar Measurement of Atmospheric Gases by Differential Absorption,” J. Appl. Meteorol. 13, 71–77 (1974). [CrossRef]
  4. R. T. H. Collis, P. B. Russell, in Laser Monitoring of the Atmosphere, E. D. Hinkley, Ed., (Springer, New York, 1976), p. 117–151.
  5. R. M. Schotland, “Some Observations of the Vertical Profile of Water Vapor by Means of a Ground Based Optical Radar,” in Proceedings, Fourth Symposium on Remote Sensing of Environment, 12–24 Apr. 1966 (U. Michigan, Ann Arbor, 1966).
  6. E. V. Browell, T. D. Wilkerson, T. J. McIlrath, “Water Vapor Differential Absorption Lidar Development and Evaluation,” Appl. Opt. 18, 3474–3483 (1979). [CrossRef] [PubMed]
  7. C. Cahen, G. Megie, P. Flamant, “Lidar Monitoring of Water Vapor Cycle in the Troposphere,” J. Appl. Meteorol. 21, 1506–1515 (1982). [CrossRef]
  8. E. V. Browell, “Remote Sensing of Tropospheric Gases and Aerosols with an Airborne DIAL System,” in Optical and Laser Remote Sensing, D. K. Killinger, A. Mooradian, Eds., (Springer-Verlag, New York, 1983), pp. 138–147.
  9. E. V. Browell, A. K. Goroch, T. D. Wilkerson, S. Ismail, R. Markson, “Airborne DIAL Water Vapor and Aerosol Measurements Over the Gulf Stream,” Abstract, Twelfth International Laser Radar Conference, Aix-en-Provence, France, 13–17 Aug. (1984).
  10. V. E. Zuev, Yu S. Makushkin, V. N. Marichev, A. A. Mitsel, V. V. Zuev, “Lidar Differential Absorption and Scattering Technique,” Appl. Opt. 22, 3733–3741 (1983). [CrossRef] [PubMed]
  11. W. B. Grant, J. S. Margolis, A. M. Brothers, D. M. Tratt, “CO2 DIAL Measurements of Water Vapor,” Appl. Opt. 26, 3033–3042 (1987). [CrossRef] [PubMed]
  12. J. Bosenberg, “A DIAL System for High Resolution Water Vapor Measurements in the Troposphere,” in Laser and Optical Remote Sensing: Instrumentation and Techniques, OSA Tech. Digest Series, 18, 22–25 (1987).
  13. E. V. Browell et al., “Development of a High-Altitude H2O Airborne DIAL System—The Lidar Atmospheric Sensing Experiment (LASE),” Abstracts, Thirteenth International Laser Radar Conference, Toronto, Canada, 11–15 Aug. (1986).
  14. E. V. Browell, S. Ismail, “Spaceborne Lidar Investigations of the Atmosphere,” in Proceedings, ESA Workshop on Space Laser Applications and Technology, Les Diablerets, Switzerland, ESA SP-202, 181–188, May (1984).
  15. M. Endemann et al., “Orbiting Lidars for Atmospheric Sounding,” Final Report, Vol. I, Battelle-Institut E. V., Frankfurt, FRG (Dec.1984).
  16. E. V. Browell, S. Ismail, M. P. McCormick, T. J. Swissler, “Spaceborne Lidar Systems for Measurement of Atmospheric Water Vapor and Aerosols,” in Proceedings, AIAA/NASA EOS Conference, Virginia Beach, VA, Paper No. 85-2091, Oct. 8–10 (1985).
  17. “NASA, Lidar Atmospheric Sounder and Altimeter,” EOS Report, Vol. 2 (1987).
  18. M. J. Kavaya, S. W. Henderson, E. C. Russell, R. M. Huffaker, R. G. Frehlich, “Monte Carlo Computer Simulations of Ground-based and Space-based Coherent DIAL Water Vapor Profiling,” Appl. Opt. 28, 840–851 (1989). [CrossRef] [PubMed]
  19. E. V. Browell, S. Ismail, S. T. Shipley, “Ultraviolet DIAL Measurements of O3 Profiles in Regions of Spatially Inhomogeneous Aerosols,” Appl. Opt. 24, 2827–2836 (1985). [CrossRef] [PubMed]
  20. E. V. Browell, P. Woods, First Int. DIAL Workshop Report, Virginia Beach, VA, Nov. 1985, NASA Ref. Pub. (1989).
  21. R. T. Thompson, “Differential Absorption and Scattering Sensitivity Predictions,” NASA Contract. Rep. 2627 (1976).
  22. E. E. Remsberg, L. L. Gordley, “Analysis of Differential Absorption Lidar from the Space Shuttle,” Appl. Opt. 17, 624–630 (1978). [CrossRef] [PubMed]
  23. R. A. McClatchey et al., “AFCRL Atmospheric Absorption Line Parameters Compilation,” Air Force Cambridge Research Laboratory, Rep. No. TR-0096Jan. (1973).
  24. W. S. Benedict, L. D. Kaplan, “Calculation of Line Widths in H2O–N2 Collisions,” J. Chem. Phys. 30, 388–398 (1959).
  25. T. D. Wilkerson, G. Schwemmer, B. Gentry, L. P. Giver, “Intensities and N2 Collision-Broadening Coefficients Measured for Selected H2O Absorption Lines Between 714 and 732 nm,” J. Quant. Spectrosc. Radiat. Transfer 22, 315–331 (1979). [CrossRef]
  26. S. R. Drayson, “Rapid Computation of the Voigt Profile,” J. Quant. Spectrosc. Radiat. Transfer 16, 611–614 (1976). [CrossRef]
  27. McClatchey et al., “Optical Properties of the Atmosphere,” Air Force Geophys. Lab., Hanscom AFB, AFCRL-72-0497 (1972).
  28. M. P. Thekaekara, “Extraterrestrial Solar Spectrum, 3000–6100A at 1-A Intervals,” Appl. Opt. 13, 518–522 (1974). [CrossRef] [PubMed]
  29. P. P. Webb, R. J. Mclntyer, J. Conradi, “Properties of Avalanche Photodiodes,” RCA Review 35, 234–278 (1974).
  30. D. E. Bowker, R. E. Davis, D. L. Myrick, K. Stacy, W. T. Jones, “Spectral Reflectances of Natural Targets for use in Remote Sensing Studies,” NASA Ref. Pub., 1139, June (1985).
  31. M. L. Wright, E. K. Proctor, L. S. Gasiorek, E. M. Liston, “A Preliminary Study of Air-Pollution Measurement by Active Remote-Sensing Techniques,” NASA-CR-132724, June (1975).
  32. R. L. Kenimer, “Predictions of Silicon Avalanche Photodiode Performance in Water Vapor Differential Absorption Lidar,” Proc. Soc. Photo. Opt. Instrum. Eng. 889, 126–135 (1988).
  33. M. J. T. Milton, P. T. Woods, “Pulse Averaging Methods for a Laser Remote Monitoring System Using Atmospheric Backscatter,” Appl. Opt. 26, 2598–2603 (1987). [CrossRef] [PubMed]
  34. W. B. Grant, A. M. Brothers, J. R. Bogan, “Differential Absorption Lidar Signal Averaging,” Appl. Opt. 27, 1934–1938 (1988). [CrossRef] [PubMed]
  35. L.S. Rothman et al., “The HITRAN Database: 1986 Edition,” Appl. Opt. 26, 4058–4097 (1987). [CrossRef] [PubMed]
  36. C. Cahen, G. Megie, “A Spectral Limitation of the Range Resolved Differential Absorption Lidar Technique,” J. Quant. Spectrosc. Radiat. Transfer 25, 151–157 (1981). [CrossRef]
  37. C. L. Korb, C. Y. Weng, “The Theory and Correction of Finite Laser Bandwidth Effects in DIAL Experiments,” Abstracts, Eleventh International Laser Radar Conference, Madison, WI, (1982).
  38. G. Fiocco, J. B. Dewolf, “Frequency Spectrum of Laser Echoes from Atmospheric Constituents and Determination of the Aerosol Content of Air,” J. Atmos. Sci. 25, 488–496 (1968). [CrossRef]
  39. G. Fiocco, G. Benedetti-Michelangeli, K. Maischberger, E. Madonna, “Measurement of Temperature and Aerosol to Molecule Ratio in the Troposphere by Optical Radar,” Nature (London), Phys. Sci., Lett. 229, 78–79 (1971).
  40. S. T. Shipley et al., “High Spectral Resolution Lidar to Measure Optical Scattering Properties of Atmospheric Aerosols. 1: Theory and Instrumentation,” Appl. Opt. 22, 3716–3724 (1983). [CrossRef] [PubMed]
  41. S. Ismail, E. V. Browell, G. Megie, P. Flamant, G. Grew, “Sensitivities in DIAL Measurements from Airborne and Spaceborne Platforms,” Abstracts, Twelfth International Laser Radar Conference, Aix-en-Provence, France (1984).
  42. A. Ansmann, “Errors in Ground Based Water-Vapor DIAL Measurements Due to Doppler-Broadened Rayleigh Backscattering,” Appl. Opt. 24, 3476–3480 (1985). [CrossRef] [PubMed]
  43. S. Ismail, E. V. Browell, “Influence of Rayleigh-Doppler Broadening on the Selection of H2O DIAL System Parameters,” Abstracts, Thirteenth International Laser Radar Conference, Toronto, Canada, Aug. 11–15 (1986).
  44. A. Ansmann, J. Bosenberg, “Correction Scheme for Spectral Broadening by Rayleigh Scattering in Differential Absorption Lidar Measurements of Water Vapor in the Troposphere,” Appl. Opt. 26, 3026–3032 (1987). [CrossRef] [PubMed]
  45. P. B. Russell, B. M. Morley, J. M. Livingston, G. W. Grams, M. Patterson, “Improved Simulation of Aerosol, Cloud, and Density Measurements by Shuttle Lidar,” NASA Contractor Report 3473, Nov. (1981).
  46. A. H. Lao, P. E. Schoen, B. Chu, “Rayleigh–Brilliouin Scattering of Gases with Internal Relaxation,” J. Chem. Phys. 64, 3547–3555 (1976). [CrossRef]
  47. H. Inaba, “Detection of Atoms and Molecules by Raman Scattering and Resonance Fluorescence,” in Laser Monitoring of the Atmosphere, E. D. Hinkley, Ed. (Springer, New York, 1976), pp. 153–236. [CrossRef]
  48. J. Bosenberg, “Measurements of the Pressure Shift of Water Vapor Absorption Lines by Simultaneous Photoacoustic Spectroscopy,” Appl. Opt. 24, 3531–3534 (1985). [CrossRef] [PubMed]
  49. J.-Y. Mandin, J.-P. Chevillard, C. Camy-Peyret, J.-M. Flaud, “The High Resolution Spectrum of Water Vapor Between 13200 and 16500 cm−1,” J. Mol. Spectrosc. 116, 167–190 (1986). [CrossRef]
  50. V. V. Zuev, Yu. N. Ponomarev, A. M. Solodov, B. A. Tikhomirov, O. A. Romanovsky, “Influence of the Shift H2O Absorption Lines with Air Pressure on the Accuracy of the Atmospheric Humidity Profiles Measured by the Differential-Absorption Method,” Opt. Lett. 10, 318–320 (1985). [CrossRef] [PubMed]
  51. E. V. Browell, S. Ismail, B. Grossmann, “Temperature Sensitivity of Absorption Lines for H2O DIAL Measurements,” Manuscript in Preparation (1989).
  52. C. Cahen, J. L. Lesne, J. Benard, P. Ponsardin, “A Meteorological (Humidity, Temperature, Aerosols) Mobile DIAL System: Concepts and Design,” Abstracts, Thirteenth International Radar Conference, Toronto, Canada, 11–15 Aug. (1986).
  53. G. K. Schwemmer et al., “A Lidar System for Measuring Atmospheric Pressure and Temperature Profiles,” Rev. Sci. Instrum. 58, 2226–2237, (1987). [CrossRef]
  54. B. Grossmann, E. V. Browell, Abstracts, Fourteenth International Laser Radar Conference, San Candido, Italy, 20–25 June (1988).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited