OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Vol. 28, Iss. 17 — Sep. 1, 1989
  • pp: 3671–3680

Laser droplet heating: fast and slow heating regimes

Bae-Sig Park and Robert L. Armstrong  »View Author Affiliations


Applied Optics, Vol. 28, Issue 17, pp. 3671-3680 (1989)
http://dx.doi.org/10.1364/AO.28.003671


View Full Text Article

Enhanced HTML    Acrobat PDF (1062 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

The heating of a laser-irradiated droplet is analyzed theoretically and numerically by solving the heat transport equation. Two regimes of droplet heating are considered, slow and fast heating. In the slow heating regime, the thermal diffusion term plays an important role and the droplet may not experience explosive vaporization during the lifetime of the laser pulse. In the fast heating regime, the vaporization term plays the dominant role and the temperature profile inside the droplet is similar to the heat production profile except for a thin shell near the surface. Numerical results are presented for the case of water droplets irradiated by 10.6 μm laser radiation.

© 1989 Optical Society of America

History
Original Manuscript: October 25, 1988
Published: September 1, 1989

Citation
Bae-Sig Park and Robert L. Armstrong, "Laser droplet heating: fast and slow heating regimes," Appl. Opt. 28, 3671-3680 (1989)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-28-17-3671


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. R. L. Armstrong, S. A. W. Gerstl, A. Zardecki, “Nonlinear Pulse Propagation in the Presence of Evaporating Aerosols,” J. Opt. Soc. Am. A 2, 1739 (1985). [CrossRef]
  2. K. D. Egorov, V. P. Kandidov, S. S. Chesnokov, “Numerical Analysis of the Propagation of High-Intensity Laser Radiation in the Atmosphere,” Sov. Phys. J. 2, 66 (1983).
  3. A. V. Kusikovskii, L. K. Chistyakova, V. I. Kokhanov, “Pulsed Clearing of a Synthetic Aqueous Aerosol by CO2 Laser Radiation,” Sov. J. Quantum Electron. 11, 1277 (1981). [CrossRef]
  4. V. E. Zuev, Y. D. Kopytin, “Nonlinear Propagation of Intense Light in a Gaseous Medium with Solid Microfilling,” Sov. Phys. J. 11, 79 (1977).
  5. P. W. Dusel, M. Kerker, D. D. Cooke, “Distribution of Absorption Centers Within Irradiated Spheres,” J. Opt. Soc. Am. 69, 55 (1979). [CrossRef]
  6. J. D. Pendleton, “Water Droplets Irradiated by a Pulsed CO2 Laser: Comparison of Computed Temperature Contours with Explosive Vaporization Patterns,” Appl. Opt. 24, 1631 (1985). [CrossRef] [PubMed]
  7. A. P. Prishivalko, “Heating and Destruction of Water Drops on Exposure to Radiation with Inhomogeneous Internal Heat Evolution,” Sov. Phys. J. 26, 142 (1983). [CrossRef]
  8. A. P. Prishivalko, S. T. Leiko, “Radiative Heating and Evaporation of Droplets,” J. Appl. Spectrosc. 33, 1137 (1980). [CrossRef]
  9. A. Biswas, H. Latifi, P. Shah, L. J. Radziemski, R. L. Armstrong, “Time-Resolved Spectroscopy of Plasmas Initiated on Single, Levitated Aerosol Droplets,” Opt. Lett. 12, 313 (1987). [CrossRef] [PubMed]
  10. J. H. Eickmans, S. -F. Hsieh, R. K. Chang, “Laser-Induced Explosion of H2O Droplets: Spatially Resolved Spectra,” Opt. Lett. 12, 22 (1987). [CrossRef] [PubMed]
  11. R. G. Pinnick, A. Biswas, P. Chylek, R. L. Armstrong, H. Latifi, E. Creegan, V. Srivastava, M. Jarzembski, G. Fernandez, “Stimulated Raman Scattering from Micron-Sized Droplets: Time Resolved Measurements,” Opt. Lett. 13, 494 (1988). [CrossRef] [PubMed]
  12. J. -Z. Zhang, D. H. Leach, R. K. Chang, “Photon Lifetime Within a Droplet: Temporal Determination of Elastic and Stimulated Raman Scattering,” Opt. Lett. 13, 270 (1988). [CrossRef] [PubMed]
  13. R. L. Armstrong, “Interactions of Absorbing Aerosols with Intense Light Beams,” J. Appl. Phys. 56, 2142 (1984). [CrossRef]
  14. R. Cole, in Advances in Heat Transfer, Vol. 10, J. P. Hartnett, T. F. Irvine, Eds. (Academic, New York, 1974). [CrossRef]
  15. V. P. Skirpov, Metastable Liquids (Wiley, New York, 1974).
  16. R. L. Armstrong, “Aerosol Heating and Vaporization by Pulsed Light Beams,” Appl. Opt. 23, 148 (1984). [CrossRef] [PubMed]
  17. A. Zardecki, R. L. Armstrong, “Energy Balance in Laser-Irradiated Vaporizing Droplets,” Appl. Opt. 27, 3690 (1988). [CrossRef] [PubMed]
  18. S. C. Davies, J. R. Brock, “Laser Evaporation of Droplets,” Appl. Opt. 26, 786 (1987), “Laser Evaporation of Droplets: Errata,” 26, 4036 (1987). [CrossRef] [PubMed]
  19. R. L. Armstrong, P. J. O’Rourke, A. Zardecki, “Vaporization of Irradiated Droplets,” Phys. Fluids 29, 3573 (1986). [CrossRef]
  20. R. L. Armstrong, A. Zardecki, “Diffusive and Convective Vaporization of Irradiated Droplets,” J. Appl. Phys. 62, 4571 (1987). [CrossRef]
  21. J. C. Carls, J. R. Brock, “Explosion of a Water Droplet by Pulsed Laser Heating,” Aerosol Sci. Technol. 7, 79 (1987). [CrossRef]
  22. N. G. Kondrashov, A. P. Prishivalko, “Approximate Solution for the Evaporation of a Spherical Particle with an Inhomogeneous Distribution of Internal Heat Sources,” Dokl. Akad. Nauk BSSR 19, 984 (1975).
  23. F. A. Williams, “On Vaporization of Mist by Radiation,” Int. J. Heat Mass Transfer 8, 575 (1965). [CrossRef]
  24. C. J. Knight, “Theoretical Modeling of Rapid Surface Vaporization with Back Pressure,” AIAA J. 17, 519 (1979). [CrossRef]
  25. A. V. Kuzikovskii, “Dynamics of a Spherical Particle in an Intense Optical Field,” Sov. Phys. J 13, 615 (1970).
  26. A. P. Prishivalko, M. S. Veremchuk, “Heating and Evaporation of Water Drops with Insoluble Absorbing Core in the Case of Inhomogeneous Internal Heat Liberation,” Dokl. Akad. Nauk BSSR 25, 305 (1981).
  27. L. W. Pinkley, P. P. Sethna, D. Williams, “Optical Constants of Water in the Infrared: Influence of Temperature,” J. Opt. Soc. Am. 67, 494 (1977). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited