OSA's Digital Library

Applied Optics

Applied Optics

APPLICATIONS-CENTERED RESEARCH IN OPTICS

  • Vol. 28, Iss. 18 — Sep. 15, 1989
  • pp: 3820–3829

Comparison between electrical and free space optical interconnects for fine grain processor arrays based on interconnect density capabilities

Michael R. Feldman, Clark C. Guest, Timothy J. Drabik, and Sadik C. Esener  »View Author Affiliations


Applied Optics, Vol. 28, Issue 18, pp. 3820-3829 (1989)
http://dx.doi.org/10.1364/AO.28.003820


View Full Text Article

Enhanced HTML    Acrobat PDF (1355 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Optically interconnected processor arrays are compared to conventional fully electronic processor arrays in terms of interconnect density capabilities. A complexity model is introduced that allows the calculation of the array area growth rate as an asymptotic function of the number of processing elements in the array. Lower bounds on the area growth rate of electrically interconnected processor arrays are compared to upper bounds for free-space optically interconnected circuits that employ computer generated holograms. Results indicate that for connection networks such as the hypercube, perfect shuffle and crossbar networks, that have a high minimum bisection width (a measure of the global nature of an interconnect topology) and contain some degree of spatial invariance, optically interconnected circuit area growth rates are below lower bounds on VLSI circuit growth rates.

© 1989 Optical Society of America

History
Original Manuscript: October 11, 1988
Published: September 15, 1989

Citation
Michael R. Feldman, Clark C. Guest, Timothy J. Drabik, and Sadik C. Esener, "Comparison between electrical and free space optical interconnects for fine grain processor arrays based on interconnect density capabilities," Appl. Opt. 28, 3820-3829 (1989)
http://www.opticsinfobase.org/ao/abstract.cfm?URI=ao-28-18-3820


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. Daniel Hillis, The Connection Machine (MIT Press, Cambridge, 1985).
  2. C. Seitz, “Concurrent VLSI Architectures,” IEEE Trans. Cornput. C-33, 1247–1265 (1984). [CrossRef]
  3. K. C. Bowler, A. D. Bruce, R. D. Kenway, G. S. Pawley, D. J. Wallace, “Exploiting Highly Concurrent Computers for Physics,” Phys. Today 40, 40–48 (1987). [CrossRef]
  4. J. W. Goodman, F. I. Leonberger, S. Y. Kung, R. A. Athale, “Optical Interconnections for VLSI Systems,” Proc. IEEE, 72, 850–866 (1984). [CrossRef]
  5. M. R. Feldman, S. C. Esener, C. C. Guest, H. Lee Sing, “Comparison Between Optical and Electrical Interconnects Based on Power and Speed Considerations,” Appl. Opt. 27, 1742–1751 (1988). [CrossRef] [PubMed]
  6. S. Sakai, H. Shiraishi, M. Umeno, “AlGaAs/GaAs Stripe Laser Diodes Fabricated on Si Substrates by MOCVD,” IEEE J. Quantum Electron. QE-23, 1080–1084 (1987). [CrossRef]
  7. R. E. Brooks, “Micromechanical Light Modulators on Silicon,” Opt. Eng. 24, 101–106 (1985). [CrossRef]
  8. G. D. Boyd, D. A. B. Miller, D. S. Chemla, S. L. McCall, A. C. Gossard, J. H. English, “Multiple Quantum Well Reflection Modulator,” Appl. Phys. Lett. 50, 1119–1121 (1987). [CrossRef]
  9. E. Bradley, P. K. L. Yu, “Proposed Modulator for Global VLSI Optical Interconnect Network,” Jpn. J. Appl. Phys. 26, L971–L973 (1987). [CrossRef]
  10. W. H. Wu et al., “Implementation of Optical Interconnections for VLSI,” IEEE Trans. Electron Devices, ED-34, 706–713 (1987). [CrossRef]
  11. M. R. Feldman, C. C. Guest, “Computer Generated Holographic Optical Elements for Optical Interconnection of Very Large Scale Integrated Circuits,” Appl. Opt. 26, 4377–4384 (1987). [CrossRef] [PubMed]
  12. R. K. Kostuk, J. W. Goodman, L. Hesselink, “Optical Imaging Applied to Microelectronic Chip-to-Chip Interconnections,” Appl. Opt., 24, 2851–2858 (1985). [CrossRef] [PubMed]
  13. C. D. Thompson, “Area-Time Complexity for VLSI,” in Proceedings of the Eleventh Annual ACM Symposium on Theory of Computing, Atlanta, GA, 30 Apr. 1979, pp. 81–88.
  14. J. D. Ullman, Computational Aspects of VLSI, Computer Science Press, (Rockville, MD, 1984) Chap. 2.
  15. D. Gabor, “Light and Information,” Prog. Opt. 1, 109–000 (1961). [CrossRef]
  16. R. Barakat, J. Reif, “Lower Bounds on the Computational Efficiency of Optical Computing Systems,” Appl. Opt., 26, 1015–1018 (1987). [CrossRef] [PubMed]
  17. M. R. Feldman, C. C. Guest, “Interconnect Density Capabilities of Computer Generated Holograms for Optical Interconnection of Very Large Scale Integrated Circuits,” Appl. Opt. 28, 3134–3137 (1989). [CrossRef] [PubMed]
  18. M. G. Moharam, T. K. Gaylord, R. Magnusson, “Criteria for Raman-Nath Regime Diffraction by Phase Gratings,” Opt. Commun., 32, 19–23 (1980). [CrossRef]
  19. J. W. Goodman, “Fan-in and Fan-out with Optical Interconnections,” Opt. Acta, 32, 1489–1496 (1985). [CrossRef]
  20. B. K. Jenkins, P. Chavel, R. Forchheimer, A. A. Sawchuck, T. C. Strand, “Architectural Implications of a Digital Optical Process,” Appl. Opt., 23, 3465–3474 (1984). [CrossRef] [PubMed]
  21. K. S. Huang, B. K. Jenkins, A. A. Sawchuk, “Programming a Digital Optical Cellular Image Processor,” J. Opt. Soc. Am. A 4(13), P87–P88 (1987).
  22. A. W. Lohmann, “What Classical Optics Can Do for the Digital Optical Computer,” Appl. Opt., 25, 1543–1549 (1986). [CrossRef] [PubMed]
  23. C. W. Stirk, R. A. Athale, M. W. Haney, “Folded Perfect Shuffle Optical Processor,” Appl. Opt., 27, 202–203 (1988). [CrossRef] [PubMed]
  24. S. C. Esener, “Silicon Device Development for Si/PLZT Spatial Light Modulators,” Ph.D. Thesis (U. California, San Diego, La Jolla, June1986), Chapter 1.
  25. L. A. Glasser, D. W. Dobberpuhl, The Design and Analysis of VLSI Circuits, (Addison-Wesley, Reading, MA, 1985), p. 196.
  26. M. R. Feldman, C. C. Guest, “Automated Design of Holographic Optical Elements for Interconnection of Electronic Circuits,” J. Opt. Soc. Am. A 3(13) P80 (1986).
  27. M. R. Feldman, C. C. Guest, S. L. Lee, “Design of Computer Generated Holograms for a Shared Memory Network,” Proc. Soc. Photo-Opt. Instrum. Eng. 28, 258–261 (1989).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 
Fig. 4 Fig. 5
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited