OSA's Digital Library

Applied Optics

Applied Optics


  • Vol. 28, Iss. 18 — Sep. 15, 1989
  • pp: 3918–3928

Optical spatial tracking using coherent detection in the pupil plane

Eric A. Swanson, Gary M. Carter, D. Jonathan Bernays, and David M. Hodsdon  »View Author Affiliations

Applied Optics, Vol. 28, Issue 18, pp. 3918-3928 (1989)

View Full Text Article

Enhanced HTML    Acrobat PDF (1346 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Design considerations for a heterodyne spatial tracking system utilizing pupil plane processing techniques and its advantages over traditional focal plane processing are described. Noise performance bounds, optimal and suboptimal local oscillator distributions, pull-in performance, and applications other than spatial tracking are discussed. Experimental verification of a one-axis closed-loop tracking system is presented.

© 1989 Optical Society of America

Original Manuscript: December 16, 1988
Published: September 15, 1989

Eric A. Swanson, Gary M. Carter, D. Jonathan Bernays, and David M. Hodsdon, "Optical spatial tracking using coherent detection in the pupil plane," Appl. Opt. 28, 3918-3928 (1989)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. E. A. Swanson, V. W. S. Chan, “Heterodyne Spatial Tracking System for Optical Space Communication,” IEEE Trans. Commun. COM-34, 118–126 (1986). [CrossRef]
  2. L. J. Sullian, “Infrared Coherent Radar,” in Proc. Soc. Photo. Opt. Instrum. Engr. 227, 148–161 (1980); DTIC AD-A102689.
  3. R. Teoste, W. J. Scouler, D. L. Spears, “Coherent Mono-pulse Tracking with a 10.6 μm Radar,” in Proceedings IEEE OSA Conf. Laser Engr. Appl., Washington, DC, June2, 1977.
  4. R. H. Kingston, “Coherent Optical Radar,” Opt. News, 27–31 (Summer1977). [CrossRef]
  5. J. H. McElroy et al., “CO2 Laser Communication System for Near-Earth Space Applications,” Proc. IEEE 65, No. 2, February1977, 221–251 (1977). [CrossRef]
  6. T. S. Wei, R. M. Gagliardi, “Direct Detection vs Heterodyne in Optical Beam Tracking,” in Proc. Soc. Photo. Opt. Instrum. Engr. 739, 189–196 (1987).
  7. J. W. Goodman, Introduction to Fourier Optics (McGraw Hill, New York, 1968).
  8. E. A. Swanson, J. K. Roberge, “Design Considerations and Experimental Results for Direct Detection Spatial Tracking Systems,” Opt. Eng. 18, 659–666 (1989).
  9. M. I. Skolnick, Radar Handbook (McGraw Hill, New York, 1970), Chapt. 21.
  10. D. K. Barton, Radar System Analysis (Artech, Dedhum, MA, 1979), Chap. 9.
  11. R. S. Bondurant et al., “Opto-Mechanical Subsystem for Space-Based Coherent Optical Communication,” in Proc. Soc. Photo. Opt. Instrum. Eng. 996, 92–100 (1988).
  12. W. L. Stutzman, G. A. Thiele, Antenna Theory and Design (Wiley, New York, 1981).
  13. C. L. Hayes, R. A. Brandewie, W. C. Davis, G. E. Meyers, “Experimental Test of an Infrared Phase Conjugation Adaptive Array,” J. Opt. Soc. Am. 67, 269–277 (1977). [CrossRef]
  14. K. A. Winick, P. Kumar, “Spatial Mode Matching Efficiencies for Heterodyned GaAlAs Semiconductor Lasers,” IEEE J. Lightwave Tech. LT-6, 513–520 (1988). [CrossRef]
  15. S. B. Alexander, “Design of Wide-Band Optical Heterodyne Balanced Mixer Receiver,” IEEE J. Lightwave Tech. LT-5, 523–537 (1987). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited